TPTP Problem File: NUM244-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : NUM244-1 : TPTP v9.0.0. Bugfixed v2.1.0.
% Domain : Number Theory (Ordinals)
% Problem : Transfinite recursion lemma 11
% Version : [Qua92] axioms.
% English :
% Refs : [Qua92] Quaife (1992), Automated Deduction in von Neumann-Bern
% Source : [Quaife]
% Names : TREC.LEMMA11 [Quaife]
% Status : Unknown
% Rating : 1.00 v2.1.0
% Syntax : Number of clauses : 163 ( 51 unt; 12 nHn; 124 RR)
% Number of literals : 327 ( 73 equ; 156 neg)
% Maximal clause size : 5 ( 2 avg)
% Maximal term depth : 8 ( 1 avg)
% Number of predicates : 17 ( 16 usr; 0 prp; 1-3 aty)
% Number of functors : 65 ( 65 usr; 20 con; 0-3 aty)
% Number of variables : 303 ( 40 sgn)
% SPC : CNF_UNK_RFO_SEQ_NHN
% Comments : Not in [Qua92]. Theorem TREC.LEMMA11 in [Quaife].
% : Quaife proves all these problems by augmenting the axioms with
% all previously proved theorems. The user may create an augmented
% version of this problem by adding all previously proved theorems.
% These include all of [Qua92]'s set theory and Boolean algebra
% theorems, available from the SET domain.
% Bugfixes : v1.0.1 - Bugfix in SET004-1.ax.
% : v2.1.0 - Bugfix in SET004-0.ax.
%--------------------------------------------------------------------------
%----Include von Neuman-Bernays-Godel set theory axioms
include('Axioms/SET004-0.ax').
%----Include Set theory (Boolean algebra) axioms based on NBG set theory
include('Axioms/SET004-1.ax').
%----Include ordinal number theory axioms.
include('Axioms/NUM004-0.ax').
%--------------------------------------------------------------------------
cnf(prove_transfinite_recursion_lemma11_1,negated_conjecture,
function(x) ).
cnf(prove_transfinite_recursion_lemma11_2,negated_conjecture,
compose(z,rest(x)) = x ).
cnf(prove_transfinite_recursion_lemma11_3,negated_conjecture,
domain_of(x) = ordinal_numbers ).
cnf(prove_transfinite_recursion_lemma11_4,negated_conjecture,
member(ordered_pair(least(element_relation,domain_of(intersection(complement(x),sum_class(recursion_equation_functions(z))))),apply(sum_class(recursion_equation_functions(z)),least(element_relation,domain_of(intersection(complement(x),sum_class(recursion_equation_functions(z))))))),intersection(complement(x),sum_class(recursion_equation_functions(z)))) ).
cnf(prove_transfinite_recursion_lemma11_5,negated_conjecture,
~ subclass(sum_class(recursion_equation_functions(z)),x) ).
%--------------------------------------------------------------------------