TPTP Problem File: NUM211-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : NUM211-1 : TPTP v9.0.0. Bugfixed v2.1.0.
% Domain : Number Theory (Ordinals)
% Problem : Lemma 2 for least upper bound property 8
% Version : [Qua92] axioms.
% English :
% Refs : [Qua92] Quaife (1992), Automated Deduction in von Neumann-Bern
% Source : [Quaife]
% Names : LUB12.2 [Quaife]
% Status : Unknown
% Rating : 1.00 v2.1.0
% Syntax : Number of clauses : 161 ( 49 unt; 12 nHn; 122 RR)
% Number of literals : 325 ( 71 equ; 156 neg)
% Maximal clause size : 5 ( 2 avg)
% Maximal term depth : 6 ( 1 avg)
% Number of predicates : 17 ( 16 usr; 0 prp; 1-3 aty)
% Number of functors : 63 ( 63 usr; 19 con; 0-3 aty)
% Number of variables : 303 ( 40 sgn)
% SPC : CNF_UNK_RFO_SEQ_NHN
% Comments : Not in [Qua92]. Theorem LUB12.2 in [Quaife].
% : Quaife proves all these problems by augmenting the axioms with
% all previously proved theorems. The user may create an augmented
% version of this problem by adding all previously proved theorems.
% These include all of [Qua92]'s set theory and Boolean algebra
% theorems, available from the SET domain.
% Bugfixes : v1.0.1 - Bugfix in SET004-1.ax.
% : v2.1.0 - Bugfix in SET004-0.ax.
%--------------------------------------------------------------------------
%----Include von Neuman-Bernays-Godel set theory axioms
include('Axioms/SET004-0.ax').
%----Include Set theory (Boolean algebra) axioms based on NBG set theory
include('Axioms/SET004-1.ax').
%----Include ordinal number theory axioms.
include('Axioms/NUM004-0.ax').
%--------------------------------------------------------------------------
cnf(prove_lemma_2_for_least_upper_bound_property8_1,negated_conjecture,
subclass(image(successor_relation,x),x) ).
cnf(prove_lemma_2_for_least_upper_bound_property8_2,negated_conjecture,
member(least(element_relation,intersection(complement(intersection(power_class(x),x)),ordinal_numbers)),image(successor_relation,ordinal_numbers)) ).
cnf(prove_lemma_2_for_least_upper_bound_property8_3,negated_conjecture,
~ subclass(ordinal_numbers,intersection(power_class(x),x)) ).
%--------------------------------------------------------------------------