TPTP Problem File: NUM180-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : NUM180-1 : TPTP v9.0.0. Bugfixed v2.1.0.
% Domain : Number Theory (Ordinals)
% Problem : Limit ordinals are ordinals
% Version : [Qua92] axioms.
% English :
% Refs : [Qua92] Quaife (1992), Automated Deduction in von Neumann-Bern
% Source : [Quaife]
% Names : LIM2.1 [Quaife]
% Status : Unsatisfiable
% Rating : 0.15 v8.2.0, 0.19 v8.1.0, 0.11 v7.5.0, 0.16 v7.4.0, 0.18 v7.3.0, 0.08 v7.1.0, 0.00 v7.0.0, 0.20 v6.3.0, 0.00 v6.2.0, 0.10 v6.1.0, 0.21 v6.0.0, 0.10 v5.5.0, 0.35 v5.3.0, 0.28 v5.2.0, 0.25 v5.1.0, 0.29 v4.1.0, 0.15 v4.0.1, 0.09 v4.0.0, 0.18 v3.7.0, 0.20 v3.5.0, 0.18 v3.4.0, 0.08 v3.3.0, 0.07 v3.2.0, 0.15 v3.1.0, 0.09 v2.7.0, 0.08 v2.6.0, 0.00 v2.1.0
% Syntax : Number of clauses : 159 ( 47 unt; 12 nHn; 120 RR)
% Number of literals : 323 ( 71 equ; 156 neg)
% Maximal clause size : 5 ( 2 avg)
% Maximal term depth : 6 ( 1 avg)
% Number of predicates : 17 ( 16 usr; 0 prp; 1-3 aty)
% Number of functors : 62 ( 62 usr; 18 con; 0-3 aty)
% Number of variables : 303 ( 40 sgn)
% SPC : CNF_UNS_RFO_SEQ_NHN
% Comments : Not in [Qua92]. Theorem LIM2.1 in [Quaife].
% : Quaife proves all these problems by augmenting the axioms with
% all previously proved theorems. The user may create an augmented
% version of this problem by adding all previously proved theorems.
% These include all of [Qua92]'s set theory and Boolean algebra
% theorems, available from the SET domain.
% Bugfixes : v1.0.1 - Bugfix in SET004-1.ax.
% : v2.1.0 - Bugfix in SET004-0.ax.
%--------------------------------------------------------------------------
%----Include von Neuman-Bernays-Godel set theory axioms
include('Axioms/SET004-0.ax').
%----Include Set theory (Boolean algebra) axioms based on NBG set theory
include('Axioms/SET004-1.ax').
%----Include ordinal number theory axioms.
include('Axioms/NUM004-0.ax').
%--------------------------------------------------------------------------
cnf(prove_limit_ordinals_are_ordinals_1,negated_conjecture,
~ subclass(limit_ordinals,ordinal_numbers) ).
%--------------------------------------------------------------------------