TPTP Problem File: NUM133-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : NUM133-1 : TPTP v9.0.0. Bugfixed v2.1.0.
% Domain : Number Theory (Ordinals)
% Problem : Corollary to union of successor ordinal
% Version : [Qua92] axioms.
% English :
% Refs : [Qua92] Quaife (1992), Automated Deduction in von Neumann-Bern
% Source : [Quaife]
% Names : ORD20 cor. [Quaife]
% Status : Unsatisfiable
% Rating : 0.75 v9.0.0, 0.85 v8.2.0, 0.90 v8.1.0, 0.84 v7.4.0, 0.76 v7.3.0, 0.83 v7.0.0, 0.93 v6.3.0, 0.91 v6.2.0, 0.80 v6.1.0, 0.93 v6.0.0, 0.90 v5.5.0, 1.00 v4.1.0, 0.92 v4.0.1, 0.91 v3.7.0, 0.90 v3.5.0, 0.91 v3.4.0, 0.92 v3.3.0, 0.93 v3.2.0, 0.92 v3.1.0, 0.91 v2.7.0, 1.00 v2.1.0
% Syntax : Number of clauses : 162 ( 50 unt; 12 nHn; 123 RR)
% Number of literals : 326 ( 73 equ; 156 neg)
% Maximal clause size : 5 ( 2 avg)
% Maximal term depth : 6 ( 1 avg)
% Number of predicates : 17 ( 16 usr; 0 prp; 1-3 aty)
% Number of functors : 64 ( 64 usr; 20 con; 0-3 aty)
% Number of variables : 303 ( 40 sgn)
% SPC : CNF_UNS_RFO_SEQ_NHN
% Comments : Not in [Qua92]. Theorem ORD20 cor. in [Quaife].
% : Quaife proves all these problems by augmenting the axioms with
% all previously proved theorems. The user may create an augmented
% version of this problem by adding all previously proved theorems.
% These include all of [Qua92]'s set theory and Boolean algebra
% theorems, available from the SET domain.
% Bugfixes : v1.0.1 - Bugfix in SET004-1.ax.
% : v2.1.0 - Bugfix in SET004-0.ax.
%--------------------------------------------------------------------------
%----Include von Neuman-Bernays-Godel set theory axioms
include('Axioms/SET004-0.ax').
%----Include Set theory (Boolean algebra) axioms based on NBG set theory
include('Axioms/SET004-1.ax').
%----Include ordinal number theory axioms.
include('Axioms/NUM004-0.ax').
%--------------------------------------------------------------------------
cnf(prove_corollary_to_union_of_successor_ordinal_1,negated_conjecture,
member(x,ordinal_numbers) ).
cnf(prove_corollary_to_union_of_successor_ordinal_2,negated_conjecture,
member(y,ordinal_numbers) ).
cnf(prove_corollary_to_union_of_successor_ordinal_3,negated_conjecture,
successor(x) = successor(y) ).
cnf(prove_corollary_to_union_of_successor_ordinal_4,negated_conjecture,
x != y ).
%--------------------------------------------------------------------------