TPTP Problem File: NUM094-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : NUM094-1 : TPTP v9.0.0. Bugfixed v2.1.0.
% Domain : Number Theory (Ordinals)
% Problem : Sections property 3
% Version : [Qua92] axioms.
% English :
% Refs : [Qua92] Quaife (1992), Automated Deduction in von Neumann-Bern
% Source : [Quaife]
% Names : SE3.1 [Quaife]
% Status : Unsatisfiable
% Rating : 0.70 v9.0.0, 0.75 v8.2.0, 0.71 v8.1.0, 0.58 v7.4.0, 0.65 v7.3.0, 0.58 v7.1.0, 0.50 v7.0.0, 0.53 v6.3.0, 0.55 v6.2.0, 0.50 v6.1.0, 0.79 v6.0.0, 0.70 v5.5.0, 0.85 v5.4.0, 0.90 v5.3.0, 0.94 v5.2.0, 0.88 v5.0.0, 0.86 v4.1.0, 0.77 v4.0.1, 0.82 v3.7.0, 0.70 v3.5.0, 0.73 v3.4.0, 0.75 v3.3.0, 0.71 v3.2.0, 0.77 v3.1.0, 0.73 v2.7.0, 0.83 v2.6.0, 0.78 v2.5.0, 0.91 v2.4.0, 0.88 v2.2.1, 0.83 v2.2.0, 0.67 v2.1.0
% Syntax : Number of clauses : 162 ( 50 unt; 12 nHn; 123 RR)
% Number of literals : 326 ( 72 equ; 157 neg)
% Maximal clause size : 5 ( 2 avg)
% Maximal term depth : 6 ( 1 avg)
% Number of predicates : 17 ( 16 usr; 0 prp; 1-3 aty)
% Number of functors : 65 ( 65 usr; 21 con; 0-3 aty)
% Number of variables : 303 ( 40 sgn)
% SPC : CNF_UNS_RFO_SEQ_NHN
% Comments : Not in [Qua92]. Theorem SE3.1 in [Quaife].
% : Quaife proves all these problems by augmenting the axioms with
% all previously proved theorems. The user may create an augmented
% version of this problem by adding all previously proved theorems.
% These include all of [Qua92]'s set theory and Boolean algebra
% theorems, available from the SET domain.
% Bugfixes : v1.0.1 - Bugfix in SET004-1.ax.
% : v2.1.0 - Bugfix in SET004-0.ax.
%--------------------------------------------------------------------------
%----Include von Neuman-Bernays-Godel set theory axioms
include('Axioms/SET004-0.ax').
%----Include Set theory (Boolean algebra) axioms based on NBG set theory
include('Axioms/SET004-1.ax').
%----Include ordinal number theory axioms.
include('Axioms/NUM004-0.ax').
%--------------------------------------------------------------------------
cnf(prove_sections_property3_1,negated_conjecture,
well_ordering(xr,y) ).
cnf(prove_sections_property3_2,negated_conjecture,
section(xr,w,y) ).
cnf(prove_sections_property3_3,negated_conjecture,
~ member(least(xr,intersection(complement(w),y)),y) ).
cnf(prove_sections_property3_4,negated_conjecture,
y != w ).
%--------------------------------------------------------------------------