TPTP Problem File: NUM082-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : NUM082-1 : TPTP v9.0.0. Bugfixed v2.1.0.
% Domain : Number Theory (Ordinals)
% Problem : Uniqueness of the least element of a non-empty subset
% Version : [Qua92] axioms.
% English :
% Refs : [Qua92] Quaife (1992), Automated Deduction in von Neumann-Bern
% Source : [Quaife]
% Names : WE10 [Quaife]
% Status : Unknown
% Rating : 1.00 v2.1.0
% Syntax : Number of clauses : 163 ( 51 unt; 12 nHn; 124 RR)
% Number of literals : 327 ( 73 equ; 156 neg)
% Maximal clause size : 5 ( 2 avg)
% Maximal term depth : 6 ( 1 avg)
% Number of predicates : 17 ( 16 usr; 0 prp; 1-3 aty)
% Number of functors : 66 ( 66 usr; 22 con; 0-3 aty)
% Number of variables : 303 ( 40 sgn)
% SPC : CNF_UNK_RFO_SEQ_NHN
% Comments : Not in [Qua92]. Theorem WE10 in [Quaife].
% : Quaife proves all these problems by augmenting the axioms with
% all previously proved theorems. The user may create an augmented
% version of this problem by adding all previously proved theorems.
% These include all of [Qua92]'s set theory and Boolean algebra
% theorems, available from the SET domain.
% Bugfixes : v1.0.1 - Bugfix in SET004-1.ax.
% : v2.1.0 - Bugfix in SET004-0.ax.
%--------------------------------------------------------------------------
%----Include von Neuman-Bernays-Godel set theory axioms
include('Axioms/SET004-0.ax').
%----Include Set theory (Boolean algebra) axioms based on NBG set theory
include('Axioms/SET004-1.ax').
%----Include ordinal number theory axioms.
include('Axioms/NUM004-0.ax').
%--------------------------------------------------------------------------
cnf(prove_least_is_unique_in_non_empty_set_1,negated_conjecture,
well_ordering(xr,y) ).
cnf(prove_least_is_unique_in_non_empty_set_2,negated_conjecture,
subclass(u,y) ).
cnf(prove_least_is_unique_in_non_empty_set_3,negated_conjecture,
member(v,u) ).
cnf(prove_least_is_unique_in_non_empty_set_4,negated_conjecture,
segment(xr,u,v) = null_class ).
cnf(prove_least_is_unique_in_non_empty_set_5,negated_conjecture,
least(xr,u) != v ).
%--------------------------------------------------------------------------