TPTP Problem File: NUM066-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : NUM066-1 : TPTP v9.0.0. Bugfixed v2.1.0.
% Domain : Number Theory (Ordinals)
% Problem : Corollary to well ordering property 1
% Version : [Qua92] axioms.
% English :
% Refs : [Qua92] Quaife (1992), Automated Deduction in von Neumann-Bern
% Source : [Quaife]
% Names : WE2.2 cor [Quaife]
% Status : Unsatisfiable
% Rating : 0.25 v8.2.0, 0.29 v8.1.0, 0.32 v7.4.0, 0.41 v7.3.0, 0.25 v7.0.0, 0.27 v6.4.0, 0.33 v6.3.0, 0.36 v6.2.0, 0.50 v6.0.0, 0.30 v5.5.0, 0.70 v5.3.0, 0.72 v5.2.0, 0.62 v5.1.0, 0.59 v5.0.0, 0.57 v4.1.0, 0.62 v4.0.1, 0.64 v4.0.0, 0.55 v3.7.0, 0.40 v3.5.0, 0.45 v3.4.0, 0.50 v3.3.0, 0.57 v3.2.0, 0.46 v3.1.0, 0.36 v2.7.0, 0.42 v2.6.0, 0.22 v2.5.0, 0.55 v2.4.0, 0.62 v2.3.0, 0.50 v2.2.1, 0.50 v2.2.0, 0.33 v2.1.0
% Syntax : Number of clauses : 162 ( 50 unt; 12 nHn; 123 RR)
% Number of literals : 326 ( 71 equ; 155 neg)
% Maximal clause size : 5 ( 2 avg)
% Maximal term depth : 6 ( 1 avg)
% Number of predicates : 17 ( 16 usr; 0 prp; 1-3 aty)
% Number of functors : 65 ( 65 usr; 21 con; 0-3 aty)
% Number of variables : 303 ( 40 sgn)
% SPC : CNF_UNS_RFO_SEQ_NHN
% Comments : Not in [Qua92]. Theorem WE2.2 cor in [Quaife].
% : Quaife proves all these problems by augmenting the axioms with
% all previously proved theorems. The user may create an augmented
% version of this problem by adding all previously proved theorems.
% These include all of [Qua92]'s set theory and Boolean algebra
% theorems, available from the SET domain.
% Bugfixes : v1.0.1 - Bugfix in SET004-1.ax.
% : v2.1.0 - Bugfix in SET004-0.ax.
%--------------------------------------------------------------------------
%----Include von Neuman-Bernays-Godel set theory axioms
include('Axioms/SET004-0.ax').
%----Include Set theory (Boolean algebra) axioms based on NBG set theory
include('Axioms/SET004-1.ax').
%----Include ordinal number theory axioms.
include('Axioms/NUM004-0.ax').
%--------------------------------------------------------------------------
cnf(prove_corollary_to_well_ordering_property1_1,negated_conjecture,
well_ordering(element_relation,y) ).
cnf(prove_corollary_to_well_ordering_property1_2,negated_conjecture,
subclass(u,y) ).
cnf(prove_corollary_to_well_ordering_property1_3,negated_conjecture,
member(v,u) ).
cnf(prove_corollary_to_well_ordering_property1_4,negated_conjecture,
member(v,least(element_relation,u)) ).
%--------------------------------------------------------------------------