TPTP Problem File: NUM030-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : NUM030-1 : TPTP v9.0.0. Bugfixed v2.1.0.
% Domain : Number Theory (Ordinals)
% Problem : Symmetrization property 3
% Version : [Qua92] axioms.
% English :
% Refs : [Qua92] Quaife (1992), Automated Deduction in von Neumann-Bern
% Source : [Quaife]
% Names : SY3 [Quaife]
% Status : Unsatisfiable
% Rating : 0.45 v8.2.0, 0.52 v8.1.0, 0.37 v7.5.0, 0.53 v7.3.0, 0.58 v7.1.0, 0.50 v7.0.0, 0.60 v6.4.0, 0.53 v6.3.0, 0.55 v6.2.0, 0.40 v6.1.0, 0.79 v6.0.0, 0.70 v5.5.0, 0.85 v5.3.0, 0.89 v5.2.0, 0.81 v5.1.0, 0.82 v5.0.0, 0.79 v4.1.0, 0.85 v4.0.1, 0.82 v4.0.0, 0.73 v3.7.0, 0.70 v3.5.0, 0.82 v3.4.0, 0.83 v3.3.0, 0.86 v3.2.0, 0.77 v3.1.0, 0.55 v2.7.0, 0.83 v2.6.0, 0.67 v2.5.0, 0.73 v2.4.0, 0.88 v2.3.0, 1.00 v2.1.0
% Syntax : Number of clauses : 160 ( 48 unt; 12 nHn; 121 RR)
% Number of literals : 324 ( 72 equ; 156 neg)
% Maximal clause size : 5 ( 2 avg)
% Maximal term depth : 6 ( 1 avg)
% Number of predicates : 17 ( 16 usr; 0 prp; 1-3 aty)
% Number of functors : 63 ( 63 usr; 19 con; 0-3 aty)
% Number of variables : 303 ( 40 sgn)
% SPC : CNF_UNS_RFO_SEQ_NHN
% Comments : Not in [Qua92]. Theorem SY3 in [Quaife].
% : Quaife proves all these problems by augmenting the axioms with
% all previously proved theorems. The user may create an augmented
% version of this problem by adding all previously proved theorems.
% These include all of [Qua92]'s set theory and Boolean algebra
% theorems, available from the SET domain.
% Bugfixes : v1.0.1 - Bugfix in SET004-1.ax.
% : v2.1.0 - Bugfix in SET004-0.ax.
%--------------------------------------------------------------------------
%----Include von Neuman-Bernays-Godel set theory axioms
include('Axioms/SET004-0.ax').
%----Include Set theory (Boolean algebra) axioms based on NBG set theory
include('Axioms/SET004-1.ax').
%----Include ordinal number theory axioms.
include('Axioms/NUM004-0.ax').
%--------------------------------------------------------------------------
cnf(prove_symmetrization_property3_1,negated_conjecture,
symmetrization_of(x) = x ).
cnf(prove_symmetrization_property3_2,negated_conjecture,
~ subclass(inverse(x),x) ).
%--------------------------------------------------------------------------