TPTP Problem File: NUM027-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : NUM027-1 : TPTP v9.0.0. Bugfixed v4.0.0.
% Domain : Number Theory
% Problem : If a >= b and b*c <= a*c, then c = 0
% Version : [LS74] axioms : Incomplete > Reduced > Incomplete.
% English :
% Refs : [LS74] Lawrence & Starkey (1974), Experimental Tests of Resol
% : [WM76] Wilson & Minker (1976), Resolution, Refinements, and S
% Source : [SPRFN]
% Names : ls87 [LS74]
% : ls87 [WM76]
% Status : Unsatisfiable
% Rating : 0.09 v9.0.0, 0.00 v7.0.0, 0.12 v6.3.0, 0.00 v5.0.0, 0.07 v4.1.0, 0.00 v4.0.0
% Syntax : Number of clauses : 21 ( 10 unt; 2 nHn; 13 RR)
% Number of literals : 36 ( 0 equ; 17 neg)
% Maximal clause size : 3 ( 1 avg)
% Maximal term depth : 4 ( 1 avg)
% Number of predicates : 2 ( 2 usr; 0 prp; 2-2 aty)
% Number of functors : 8 ( 8 usr; 4 con; 0-2 aty)
% Number of variables : 36 ( 3 sgn)
% SPC : CNF_UNS_RFO_NEQ_NHN
% Comments : The surplus transitivity axiom is removed.
% Bugfixes : v4.0.0 - Bugfix in NUM001-0.ax
%--------------------------------------------------------------------------
%----Include recursive function + and * axioms
include('Axioms/NUM001-0.ax').
%----Include recursive function less axioms
include('Axioms/NUM001-1.ax').
%--------------------------------------------------------------------------
cnf(reflexivity,axiom,
equalish(X,X) ).
cnf(symmetry,axiom,
( ~ equalish(X,Y)
| equalish(Y,X) ) ).
cnf(transitivity,axiom,
( ~ equalish(X,Y)
| ~ equalish(Y,Z)
| equalish(X,Z) ) ).
cnf(equality_preserved_over_times,axiom,
( ~ equalish(A,B)
| equalish(multiply(A,C),multiply(B,C)) ) ).
cnf(not_less_and_equal,axiom,
( ~ less(A,B)
| ~ equalish(A,B) ) ).
cnf(numbers_either_less_or_equal,axiom,
( less(A,B)
| equalish(B,A)
| less(B,A) ) ).
cnf(number_not_less_than_itself,axiom,
~ less(A,A) ).
cnf(zero_is_the_first_number,axiom,
~ equalish(successor(A),n0) ).
cnf(multiply_lemma,axiom,
( ~ less(A,B)
| equalish(C,n0)
| less(multiply(A,C),multiply(B,C)) ) ).
cnf(b_not_less_than_a,hypothesis,
~ less(b,a) ).
cnf(b_times_c_less_than_a_times_c,hypothesis,
less(multiply(b,c),multiply(a,c)) ).
cnf(prove_c_is_0,negated_conjecture,
~ equalish(c,n0) ).
%--------------------------------------------------------------------------