TPTP Problem File: NUM025-2.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : NUM025-2 : TPTP v9.0.0. Bugfixed v4.0.0.
% Domain : Number Theory
% Problem : If a<b then not b<a
% Version : [LS74] axioms : Incomplete > Reduced > Incomplete.
% English :
% Refs : [LS74] Lawrence & Starkey (1974), Experimental Tests of Resol
% Source : [TPTP]
% Names : Problem 76t1 [LS74]
% Status : Unsatisfiable
% Rating : 0.00 v5.0.0, 0.07 v4.1.0, 0.00 v4.0.0
% Syntax : Number of clauses : 16 ( 9 unt; 2 nHn; 8 RR)
% Number of literals : 25 ( 0 equ; 11 neg)
% Maximal clause size : 3 ( 1 avg)
% Maximal term depth : 4 ( 1 avg)
% Number of predicates : 2 ( 2 usr; 0 prp; 2-2 aty)
% Number of functors : 7 ( 7 usr; 3 con; 0-2 aty)
% Number of variables : 26 ( 3 sgn)
% SPC : CNF_UNS_RFO_NEQ_NHN
% Comments : ++less transformed to --greater_or_equal
% : The surplus transitivity axiom is removed.
% Bugfixes : v4.0.0 - Bugfix in NUM001-0.ax
%--------------------------------------------------------------------------
%----Include recursive function axioms
include('Axioms/NUM001-0.ax').
%--------------------------------------------------------------------------
cnf(reflexivity,axiom,
equalish(X,X) ).
cnf(symmetry,axiom,
( ~ equalish(X,Y)
| equalish(Y,X) ) ).
cnf(transitivity,axiom,
( ~ equalish(X,Y)
| ~ equalish(Y,Z)
| equalish(X,Z) ) ).
%----Include recursive function less axioms
cnf(transitivity_of_less,axiom,
( greater_or_equalish(A,B)
| greater_or_equalish(C,A)
| ~ greater_or_equalish(C,B) ) ).
cnf(smaller_number,axiom,
( ~ equalish(add(successor(A),B),C)
| ~ greater_or_equalish(B,C) ) ).
cnf(less_lemma,axiom,
( greater_or_equalish(A,B)
| equalish(add(successor(predecessor_of_1st_minus_2nd(B,A)),A),B) ) ).
cnf(zero_is_the_first_number,axiom,
~ equalish(successor(A),n0) ).
cnf(no_number_less_than_itself,axiom,
greater_or_equalish(A,A) ).
cnf(a_less_than_b,hypothesis,
~ greater_or_equalish(a,b) ).
cnf(prove_b_not_less_than_a,negated_conjecture,
~ greater_or_equalish(b,a) ).
%--------------------------------------------------------------------------