TPTP Problem File: NUM021-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : NUM021-1 : TPTP v9.0.0. Bugfixed v4.0.0.
% Domain : Number Theory
% Problem : If a <= b < c, then c cannot divide a
% Version : [LS74] axioms : Incomplete.
% English :
% Refs : [LS74] Lawrence & Starkey (1974), Experimental Tests of Resol
% : [WM76] Wilson & Minker (1976), Resolution, Refinements, and S
% Source : [SPRFN]
% Names : ls65 [LS74]
% : ls65 [WM76]
% Status : Unsatisfiable
% Rating : 0.00 v7.5.0, 0.17 v7.4.0, 0.00 v7.0.0, 0.12 v6.3.0, 0.14 v6.2.0, 0.00 v5.0.0, 0.07 v4.1.0, 0.00 v4.0.0
% Syntax : Number of clauses : 19 ( 9 unt; 1 nHn; 14 RR)
% Number of literals : 32 ( 0 equ; 14 neg)
% Maximal clause size : 3 ( 1 avg)
% Maximal term depth : 4 ( 1 avg)
% Number of predicates : 3 ( 3 usr; 0 prp; 2-2 aty)
% Number of functors : 8 ( 8 usr; 4 con; 0-2 aty)
% Number of variables : 31 ( 3 sgn)
% SPC : CNF_UNS_RFO_NEQ_NHN
% Comments : Surplus transitivity axiom removed.
% : This is dumb, because there is no need for the clause
% prove_a_contradiction.
% Bugfixes : v4.0.0 - Bugfix in NUM001-0.ax
%--------------------------------------------------------------------------
%----Include recursive function + and * axioms
include('Axioms/NUM001-0.ax').
%----Include recursive function less axioms
include('Axioms/NUM001-1.ax').
%----Include recursive function divides axioms
include('Axioms/NUM001-2.ax').
%--------------------------------------------------------------------------
cnf(reflexivity,axiom,
equalish(X,X) ).
cnf(symmetry,axiom,
( ~ equalish(X,Y)
| equalish(Y,X) ) ).
cnf(transitivity,axiom,
( ~ equalish(X,Y)
| ~ equalish(Y,Z)
| equalish(X,Z) ) ).
cnf(b_less_than_c,hypothesis,
less(b,c) ).
cnf(b_greater_equal_a,hypothesis,
~ less(b,a) ).
cnf(impossible_c_divides_a,negated_conjecture,
divides(c,a) ).
cnf(prove_a_contradiction,negated_conjecture,
~ equalish(successor(A),n0) ).
%--------------------------------------------------------------------------