TPTP Problem File: NUM017-2.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : NUM017-2 : TPTP v9.0.0. Bugfixed v1.2.1.
% Domain : Number Theory
% Problem : Square root of this prime is irrational
% Version : [Rob63] axioms : Incomplete > Augmented > Complete.
% English : If a is prime, and a is not b^2/c^2, then the square root
% of a is irrational.
% Refs : [Rob63] Robinson (1963), Theorem Proving on the Computer
% Source : [TPTP]
% Names :
% Status : Unsatisfiable
% Rating : 0.15 v9.0.0, 0.19 v8.2.0, 0.08 v8.1.0, 0.11 v7.5.0, 0.10 v7.4.0, 0.22 v7.2.0, 0.38 v7.1.0, 0.43 v7.0.0, 0.14 v6.4.0, 0.29 v6.3.0, 0.17 v6.2.0, 0.00 v6.1.0, 0.40 v6.0.0, 0.44 v5.5.0, 0.62 v5.4.0, 0.53 v5.3.0, 0.67 v5.2.0, 0.50 v5.1.0, 0.43 v4.1.0, 0.22 v4.0.1, 0.17 v4.0.0, 0.33 v3.3.0, 0.00 v3.1.0, 0.22 v2.7.0, 0.00 v2.6.0, 0.29 v2.5.0, 0.00 v2.2.1, 0.38 v2.2.0, 0.50 v2.1.0, 0.33 v2.0.0
% Syntax : Number of clauses : 15 ( 5 unt; 0 nHn; 14 RR)
% Number of literals : 34 ( 2 equ; 21 neg)
% Maximal clause size : 4 ( 2 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 4 ( 3 usr; 0 prp; 1-3 aty)
% Number of functors : 7 ( 7 usr; 5 con; 0-2 aty)
% Number of variables : 37 ( 1 sgn)
% SPC : CNF_UNS_RFO_SEQ_HRN
% Comments :
% Bugfixes : v1.2.1 - Clause primes_lemma1 fixed.
%--------------------------------------------------------------------------
cnf(closure_of_product,axiom,
product(A,B,multiply(A,B)) ).
cnf(product_associativity1,axiom,
( ~ product(A,B,C)
| ~ product(D,E,B)
| ~ product(A,D,F)
| product(F,E,C) ) ).
cnf(product_associativity2,axiom,
( ~ product(A,B,C)
| ~ product(D,B,E)
| ~ product(F,D,A)
| product(F,E,C) ) ).
cnf(product_commutativity,axiom,
( ~ product(A,B,C)
| product(B,A,C) ) ).
cnf(product_left_cancellation,axiom,
( ~ product(A,B,C)
| ~ product(A,D,C)
| B = D ) ).
cnf(transitivity_of_divides,axiom,
( ~ divides(A,B)
| ~ divides(C,A)
| divides(C,B) ) ).
cnf(well_defined_product,axiom,
( ~ product(A,B,C)
| ~ product(A,B,D)
| D = C ) ).
cnf(divides_implies_product,axiom,
( ~ divides(A,B)
| product(A,second_divided_by_1st(A,B),B) ) ).
cnf(product_divisible_by_operand,axiom,
( ~ product(A,B,C)
| divides(A,C) ) ).
cnf(primes_lemma1,axiom,
( ~ divides(A,B)
| ~ product(C,C,B)
| ~ prime(A)
| divides(A,C) ) ).
cnf(a_is_prime,hypothesis,
prime(a) ).
cnf(b_squared,hypothesis,
product(b,b,d) ).
cnf(c_squared,hypothesis,
product(c,c,e) ).
cnf(a_times_c_squared_is_not_b_squared,hypothesis,
~ product(a,e,d) ).
cnf(prove_there_is_no_common_divisor,negated_conjecture,
( ~ divides(A,c)
| ~ divides(A,b) ) ).
%--------------------------------------------------------------------------