TPTP Problem File: NUM014-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : NUM014-1 : TPTP v9.1.0. Released v1.0.0.
% Domain : Number Theory
% Problem : If a is a prime and a = b^2/c^2 then a divides b
% Version : [Cha70] axioms : Incomplete.
% English :
% Refs : [Luc68] Luckham (1968), Some Tree-paring Strategies for Theore
% : [Cha70] Chang (1970), The Unit Proof and the Input Proof in Th
% : [RR+72] Reboh et al. (1972), Study of automatic theorem provin
% : [LS74] Lawrence & Starkey (1974), Experimental Tests of Resol
% : [FL+74] Fleisig et al. (1974), An Implementation of the Model
% Source : [Cha70]
% Names : Example 6 [Luc68]
% : Example 7 [Cha70]
% : Example 7 [CL73]
% : NUM1 [RR+72]
% : Example 2 [FL+74]
% Status : Unsatisfiable
% Rating : 0.00 v2.0.0
% Syntax : Number of clauses : 7 ( 4 unt; 1 nHn; 6 RR)
% Number of literals : 13 ( 0 equ; 6 neg)
% Maximal clause size : 5 ( 1 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 3 ( 3 usr; 0 prp; 1-3 aty)
% Number of functors : 4 ( 4 usr; 3 con; 0-1 aty)
% Number of variables : 11 ( 1 sgn)
% SPC : CNF_UNS_RFO_NEQ_NHN
% Comments :
%--------------------------------------------------------------------------
cnf(square,axiom,
product(X,X,square(X)) ).
cnf(commutativity,axiom,
( ~ product(X,Y,Z)
| product(Y,X,Z) ) ).
cnf(divides,axiom,
( ~ product(X,Y,Z)
| divides(X,Z) ) ).
cnf(remainder,axiom,
( ~ prime(X)
| ~ product(Y,Z,U)
| ~ divides(X,U)
| divides(X,Y)
| divides(X,Z) ) ).
cnf(a_is_prime,hypothesis,
prime(a) ).
cnf(a_equals_b_squared_by_c_squared,hypothesis,
product(a,square(c),square(b)) ).
cnf(prove_a_divides_b,negated_conjecture,
~ divides(a,b) ).
%--------------------------------------------------------------------------