TPTP Problem File: NLP264^7.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : NLP264^7 : TPTP v9.0.0. Released v5.5.0.
% Domain : Natural Language Processing
% Problem : Belief Change in man-machine-dialogues
% Version : [Ben12] axioms.
% English :
% Refs : [FH+98] Farinas del Cerro et al. (1998), Belief Reconstruction
% : [Ben12] Benzmueller (2012), Email to Geoff Sutcliffe
% Source : [Ben12]
% Names : s4-cumul-APM001+1 [Ben12]
% Status : Theorem
% Rating : 0.00 v8.2.0, 0.15 v8.1.0, 0.09 v7.5.0, 0.00 v7.4.0, 0.11 v7.2.0, 0.00 v7.1.0, 0.25 v7.0.0, 0.14 v6.4.0, 0.17 v6.3.0, 0.20 v6.2.0, 0.00 v6.1.0, 0.14 v5.5.0
% Syntax : Number of formulae : 92 ( 38 unt; 44 typ; 32 def)
% Number of atoms : 146 ( 36 equ; 0 cnn)
% Maximal formula atoms : 7 ( 3 avg)
% Number of connectives : 197 ( 5 ~; 5 |; 9 &; 168 @)
% ( 0 <=>; 10 =>; 0 <=; 0 <~>)
% Maximal formula depth : 8 ( 2 avg)
% Number of types : 3 ( 1 usr)
% Number of type conns : 186 ( 186 >; 0 *; 0 +; 0 <<)
% Number of symbols : 51 ( 49 usr; 12 con; 0-3 aty)
% Number of variables : 95 ( 49 ^; 39 !; 7 ?; 95 :)
% SPC : TH0_THM_EQU_NAR
% Comments :
%------------------------------------------------------------------------------
%----Include axioms for Modal logic S4 under cumulative domains
include('Axioms/LCL015^0.ax').
include('Axioms/LCL013^5.ax').
include('Axioms/LCL015^1.ax').
%------------------------------------------------------------------------------
thf(dest_type,type,
dest: mu > $i > $o ).
thf(class_type,type,
class: mu > $i > $o ).
thf(price_type,type,
price: mu > $i > $o ).
thf(first_type,type,
first: mu ).
thf(existence_of_first_ax,axiom,
! [V: $i] : ( exists_in_world @ first @ V ) ).
thf(ninetyfive_type,type,
ninetyfive: mu ).
thf(existence_of_ninetyfive_ax,axiom,
! [V: $i] : ( exists_in_world @ ninetyfive @ V ) ).
thf(paris_type,type,
paris: mu ).
thf(existence_of_paris_ax,axiom,
! [V: $i] : ( exists_in_world @ paris @ V ) ).
thf(second_type,type,
second: mu ).
thf(existence_of_second_ax,axiom,
! [V: $i] : ( exists_in_world @ second @ V ) ).
thf(seventy_type,type,
seventy: mu ).
thf(existence_of_seventy_ax,axiom,
! [V: $i] : ( exists_in_world @ seventy @ V ) ).
thf(law1,axiom,
mvalid @ ( mbox_s4 @ ( mimplies @ ( mand @ ( dest @ paris ) @ ( class @ first ) ) @ ( price @ ninetyfive ) ) ) ).
thf(law2,axiom,
mvalid @ ( mbox_s4 @ ( mimplies @ ( mand @ ( dest @ paris ) @ ( class @ second ) ) @ ( price @ seventy ) ) ) ).
thf(law3,axiom,
mvalid @ ( mbox_s4 @ ( mnot @ ( mand @ ( class @ first ) @ ( class @ second ) ) ) ) ).
thf(law4,axiom,
mvalid @ ( mbox_s4 @ ( mnot @ ( mand @ ( price @ ninetyfive ) @ ( price @ seventy ) ) ) ) ).
thf(belief1,axiom,
mvalid @ ( mbox_s4 @ ( dest @ paris ) ) ).
thf(belief2,axiom,
mvalid @ ( mbox_s4 @ ( class @ second ) ) ).
thf(con,conjecture,
mvalid @ ( mbox_s4 @ ( price @ seventy ) ) ).
%------------------------------------------------------------------------------