TPTP Problem File: NLP229+1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : NLP229+1 : TPTP v9.0.0. Released v2.4.0.
% Domain : Natural Language Processing
% Problem : Vincent believes that every man smokes, problem 10
% Version : [Bos00b] axioms.
% English : Eliminating non-informative interpretations in the statement
% "Vincent believes that every man smokes. Jules is a man."
% Refs : [Bos00a] Bos (2000), DORIS: Discourse Oriented Representation a
% [Bos00b] Bos (2000), Applied Theorem Proving - Natural Language
% Source : [Bos00b]
% Names : doris206 [Bos00b]
% Status : CounterSatisfiable
% Rating : 0.00 v7.5.0, 0.20 v7.4.0, 0.00 v6.1.0, 0.09 v6.0.0, 0.08 v5.5.0, 0.00 v4.1.0, 0.20 v4.0.1, 0.00 v3.1.0, 0.33 v2.7.0, 0.50 v2.6.0, 0.25 v2.5.0, 0.33 v2.4.0
% Syntax : Number of formulae : 72 ( 0 unt; 0 def)
% Number of atoms : 228 ( 3 equ)
% Maximal formula atoms : 41 ( 3 avg)
% Number of connectives : 164 ( 8 ~; 0 |; 83 &)
% ( 0 <=>; 73 =>; 0 <=; 0 <~>)
% Maximal formula depth : 31 ( 6 avg)
% Maximal term depth : 1 ( 1 avg)
% Number of predicates : 37 ( 36 usr; 0 prp; 1-4 aty)
% Number of functors : 0 ( 0 usr; 0 con; --- aty)
% Number of variables : 206 ( 190 !; 16 ?)
% SPC : FOF_CSA_RFO_SEQ
% Comments :
%--------------------------------------------------------------------------
fof(ax1,axiom,
! [U,V] :
( vincent_forename(U,V)
=> forename(U,V) ) ).
fof(ax2,axiom,
! [U,V] :
( proposition(U,V)
=> relation(U,V) ) ).
fof(ax3,axiom,
! [U,V] :
( smoke(U,V)
=> event(U,V) ) ).
fof(ax4,axiom,
! [U,V] :
( jules_forename(U,V)
=> forename(U,V) ) ).
fof(ax5,axiom,
! [U,V] :
( abstraction(U,V)
=> unisex(U,V) ) ).
fof(ax6,axiom,
! [U,V] :
( abstraction(U,V)
=> general(U,V) ) ).
fof(ax7,axiom,
! [U,V] :
( abstraction(U,V)
=> nonhuman(U,V) ) ).
fof(ax8,axiom,
! [U,V] :
( abstraction(U,V)
=> thing(U,V) ) ).
fof(ax9,axiom,
! [U,V] :
( relation(U,V)
=> abstraction(U,V) ) ).
fof(ax10,axiom,
! [U,V] :
( relname(U,V)
=> relation(U,V) ) ).
fof(ax11,axiom,
! [U,V] :
( forename(U,V)
=> relname(U,V) ) ).
fof(ax12,axiom,
! [U,V] :
( man(U,V)
=> male(U,V) ) ).
fof(ax13,axiom,
! [U,V] :
( human_person(U,V)
=> animate(U,V) ) ).
fof(ax14,axiom,
! [U,V] :
( human_person(U,V)
=> human(U,V) ) ).
fof(ax15,axiom,
! [U,V] :
( organism(U,V)
=> living(U,V) ) ).
fof(ax16,axiom,
! [U,V] :
( organism(U,V)
=> impartial(U,V) ) ).
fof(ax17,axiom,
! [U,V] :
( entity(U,V)
=> existent(U,V) ) ).
fof(ax18,axiom,
! [U,V] :
( entity(U,V)
=> specific(U,V) ) ).
fof(ax19,axiom,
! [U,V] :
( entity(U,V)
=> thing(U,V) ) ).
fof(ax20,axiom,
! [U,V] :
( organism(U,V)
=> entity(U,V) ) ).
fof(ax21,axiom,
! [U,V] :
( human_person(U,V)
=> organism(U,V) ) ).
fof(ax22,axiom,
! [U,V] :
( man(U,V)
=> human_person(U,V) ) ).
fof(ax23,axiom,
! [U,V] :
( event(U,V)
=> eventuality(U,V) ) ).
fof(ax24,axiom,
! [U,V] :
( state(U,V)
=> event(U,V) ) ).
fof(ax25,axiom,
! [U,V] :
( eventuality(U,V)
=> unisex(U,V) ) ).
fof(ax26,axiom,
! [U,V] :
( eventuality(U,V)
=> nonexistent(U,V) ) ).
fof(ax27,axiom,
! [U,V] :
( eventuality(U,V)
=> specific(U,V) ) ).
fof(ax28,axiom,
! [U,V] :
( thing(U,V)
=> singleton(U,V) ) ).
fof(ax29,axiom,
! [U,V] :
( eventuality(U,V)
=> thing(U,V) ) ).
fof(ax30,axiom,
! [U,V] :
( state(U,V)
=> eventuality(U,V) ) ).
fof(ax31,axiom,
! [U,V] :
( existent(U,V)
=> ~ nonexistent(U,V) ) ).
fof(ax32,axiom,
! [U,V] :
( nonhuman(U,V)
=> ~ human(U,V) ) ).
fof(ax33,axiom,
! [U,V] :
( specific(U,V)
=> ~ general(U,V) ) ).
fof(ax34,axiom,
! [U,V] :
( unisex(U,V)
=> ~ male(U,V) ) ).
fof(ax35,axiom,
! [U,V,W] :
( ( accessible_world(V,W)
& vincent_forename(V,U) )
=> vincent_forename(W,U) ) ).
fof(ax36,axiom,
! [U,V,W] :
( ( accessible_world(V,W)
& proposition(V,U) )
=> proposition(W,U) ) ).
fof(ax37,axiom,
! [U,V,W,X] :
( ( accessible_world(W,X)
& theme(W,U,V) )
=> theme(X,U,V) ) ).
fof(ax38,axiom,
! [U,V,W] :
( ( accessible_world(V,W)
& think_believe_consider(V,U) )
=> think_believe_consider(W,U) ) ).
fof(ax39,axiom,
! [U,V,W,X] :
( ( accessible_world(W,X)
& agent(W,U,V) )
=> agent(X,U,V) ) ).
fof(ax40,axiom,
! [U,V,W] :
( ( accessible_world(V,W)
& present(V,U) )
=> present(W,U) ) ).
fof(ax41,axiom,
! [U,V,W] :
( ( accessible_world(V,W)
& smoke(V,U) )
=> smoke(W,U) ) ).
fof(ax42,axiom,
! [U,V,W,X] :
( ( accessible_world(W,X)
& of(W,U,V) )
=> of(X,U,V) ) ).
fof(ax43,axiom,
! [U,V,W] :
( ( accessible_world(V,W)
& jules_forename(V,U) )
=> jules_forename(W,U) ) ).
fof(ax44,axiom,
! [U,V,W] :
( ( accessible_world(V,W)
& general(V,U) )
=> general(W,U) ) ).
fof(ax45,axiom,
! [U,V,W] :
( ( accessible_world(V,W)
& nonhuman(V,U) )
=> nonhuman(W,U) ) ).
fof(ax46,axiom,
! [U,V,W] :
( ( accessible_world(V,W)
& abstraction(V,U) )
=> abstraction(W,U) ) ).
fof(ax47,axiom,
! [U,V,W] :
( ( accessible_world(V,W)
& relation(V,U) )
=> relation(W,U) ) ).
fof(ax48,axiom,
! [U,V,W] :
( ( accessible_world(V,W)
& relname(V,U) )
=> relname(W,U) ) ).
fof(ax49,axiom,
! [U,V,W] :
( ( accessible_world(V,W)
& forename(V,U) )
=> forename(W,U) ) ).
fof(ax50,axiom,
! [U,V,W] :
( ( accessible_world(V,W)
& male(V,U) )
=> male(W,U) ) ).
fof(ax51,axiom,
! [U,V,W] :
( ( accessible_world(V,W)
& animate(V,U) )
=> animate(W,U) ) ).
fof(ax52,axiom,
! [U,V,W] :
( ( accessible_world(V,W)
& human(V,U) )
=> human(W,U) ) ).
fof(ax53,axiom,
! [U,V,W] :
( ( accessible_world(V,W)
& living(V,U) )
=> living(W,U) ) ).
fof(ax54,axiom,
! [U,V,W] :
( ( accessible_world(V,W)
& impartial(V,U) )
=> impartial(W,U) ) ).
fof(ax55,axiom,
! [U,V,W] :
( ( accessible_world(V,W)
& existent(V,U) )
=> existent(W,U) ) ).
fof(ax56,axiom,
! [U,V,W] :
( ( accessible_world(V,W)
& entity(V,U) )
=> entity(W,U) ) ).
fof(ax57,axiom,
! [U,V,W] :
( ( accessible_world(V,W)
& organism(V,U) )
=> organism(W,U) ) ).
fof(ax58,axiom,
! [U,V,W] :
( ( accessible_world(V,W)
& human_person(V,U) )
=> human_person(W,U) ) ).
fof(ax59,axiom,
! [U,V,W] :
( ( accessible_world(V,W)
& man(V,U) )
=> man(W,U) ) ).
fof(ax60,axiom,
! [U,V,W] :
( ( accessible_world(V,W)
& event(V,U) )
=> event(W,U) ) ).
fof(ax61,axiom,
! [U,V,W] :
( ( accessible_world(V,W)
& unisex(V,U) )
=> unisex(W,U) ) ).
fof(ax62,axiom,
! [U,V,W] :
( ( accessible_world(V,W)
& nonexistent(V,U) )
=> nonexistent(W,U) ) ).
fof(ax63,axiom,
! [U,V,W] :
( ( accessible_world(V,W)
& specific(V,U) )
=> specific(W,U) ) ).
fof(ax64,axiom,
! [U,V,W] :
( ( accessible_world(V,W)
& singleton(V,U) )
=> singleton(W,U) ) ).
fof(ax65,axiom,
! [U,V,W] :
( ( accessible_world(V,W)
& thing(V,U) )
=> thing(W,U) ) ).
fof(ax66,axiom,
! [U,V,W] :
( ( accessible_world(V,W)
& eventuality(V,U) )
=> eventuality(W,U) ) ).
fof(ax67,axiom,
! [U,V,W] :
( ( accessible_world(V,W)
& state(V,U) )
=> state(W,U) ) ).
fof(ax68,axiom,
! [U,V,W,X,Y] :
( ( accessible_world(X,Y)
& be(X,U,V,W) )
=> be(Y,U,V,W) ) ).
fof(ax69,axiom,
! [U,V,W,X,Y,Z] :
( ( think_believe_consider(U,V)
& proposition(U,Y)
& theme(U,V,Y)
& agent(U,V,X)
& think_believe_consider(U,W)
& proposition(U,Z)
& theme(U,W,Z)
& agent(U,W,X) )
=> Y = Z ) ).
fof(ax70,axiom,
! [U,V,W] :
( ( entity(U,V)
& forename(U,W)
& of(U,W,V) )
=> ~ ? [X] :
( forename(U,X)
& X != W
& of(U,X,V) ) ) ).
fof(ax71,axiom,
! [U,V,W,X] :
( be(U,V,W,X)
=> W = X ) ).
fof(co1,conjecture,
~ ( ? [U] :
( actual_world(U)
& ? [V,W,X,Y] :
( of(U,W,V)
& man(U,V)
& vincent_forename(U,W)
& forename(U,W)
& proposition(U,Y)
& agent(U,X,V)
& theme(U,X,Y)
& event(U,X)
& present(U,X)
& think_believe_consider(U,X)
& accessible_world(U,Y)
& ! [Z] :
( man(Y,Z)
=> ? [X1] :
( event(Y,X1)
& agent(Y,X1,Z)
& present(Y,X1)
& smoke(Y,X1) ) ) ) )
& ~ ? [X2] :
( actual_world(X2)
& ? [V,W,X,Y,X3,X4,X5] :
( of(X2,W,V)
& man(X2,V)
& vincent_forename(X2,W)
& forename(X2,W)
& proposition(X2,Y)
& agent(X2,X,V)
& theme(X2,X,Y)
& event(X2,X)
& present(X2,X)
& think_believe_consider(X2,X)
& accessible_world(X2,Y)
& ! [Z] :
( man(Y,Z)
=> ? [X1] :
( event(Y,X1)
& agent(Y,X1,Z)
& present(Y,X1)
& smoke(Y,X1) ) )
& of(X2,X3,X4)
& man(X2,X4)
& jules_forename(X2,X3)
& forename(X2,X3)
& man(X2,X4)
& state(X2,X5)
& be(X2,X5,X4,X4) ) ) ) ).
%--------------------------------------------------------------------------