TPTP Problem File: NLP221+1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : NLP221+1 : TPTP v9.0.0. Released v2.4.0.
% Domain : Natural Language Processing
% Problem : Vincent believes that every man smokes, problem 2
% Version : [Bos00b] axioms.
% English : Eliminating logically equivalent interpretations in the statement
% "Vincent believes that every man smokes. Jules is a man."
% Refs : [Bos00a] Bos (2000), DORIS: Discourse Oriented Representation a
% [Bos00b] Bos (2000), Applied Theorem Proving - Natural Language
% Source : [Bos00b]
% Names : doris198 [Bos00b]
% Status : CounterSatisfiable
% Rating : 0.00 v6.2.0, 0.11 v6.1.0, 0.10 v6.0.0, 0.29 v5.5.0, 0.00 v5.4.0, 0.07 v5.3.0, 0.08 v5.2.0, 0.12 v5.0.0, 0.11 v4.1.0, 0.33 v4.0.1, 0.00 v3.1.0, 0.50 v2.7.0, 0.67 v2.6.0, 0.25 v2.5.0, 0.33 v2.4.0
% Syntax : Number of formulae : 1 ( 0 unt; 0 def)
% Number of atoms : 94 ( 0 equ)
% Maximal formula atoms : 94 ( 94 avg)
% Number of connectives : 95 ( 2 ~; 0 |; 87 &)
% ( 0 <=>; 6 =>; 0 <=; 0 <~>)
% Maximal formula depth : 37 ( 37 avg)
% Maximal term depth : 1 ( 1 avg)
% Number of predicates : 16 ( 16 usr; 0 prp; 1-4 aty)
% Number of functors : 0 ( 0 usr; 0 con; --- aty)
% Number of variables : 42 ( 4 !; 38 ?)
% SPC : FOF_CSA_RFO_NEQ
% Comments :
%--------------------------------------------------------------------------
fof(co1,conjecture,
~ ~ ( ( ? [U] :
( actual_world(U)
& ? [V,W,X,Y,Z,X1,X2] :
( of(U,V,W)
& jules_forename(U,V)
& forename(U,V)
& of(U,X,W)
& man(U,W)
& vincent_forename(U,X)
& forename(U,X)
& proposition(U,Z)
& agent(U,Y,W)
& theme(U,Y,Z)
& event(U,Y)
& present(U,Y)
& think_believe_consider(U,Y)
& accessible_world(U,Z)
& ! [X3] :
( man(Z,X3)
=> ? [X4] :
( event(Z,X4)
& agent(Z,X4,X3)
& present(Z,X4)
& smoke(Z,X4) ) )
& man(U,X1)
& state(U,X2)
& be(U,X2,W,X1) ) )
=> ? [X5] :
( actual_world(X5)
& ? [X6,X7,X8,X9,X10,X11,X12,X13] :
( of(X5,X7,X6)
& man(X5,X6)
& jules_forename(X5,X7)
& forename(X5,X7)
& of(X5,X9,X8)
& man(X5,X8)
& vincent_forename(X5,X9)
& forename(X5,X9)
& proposition(X5,X11)
& agent(X5,X10,X8)
& theme(X5,X10,X11)
& event(X5,X10)
& present(X5,X10)
& think_believe_consider(X5,X10)
& accessible_world(X5,X11)
& ! [X14] :
( man(X11,X14)
=> ? [X15] :
( event(X11,X15)
& agent(X11,X15,X14)
& present(X11,X15)
& smoke(X11,X15) ) )
& man(X5,X12)
& state(X5,X13)
& be(X5,X13,X6,X12) ) ) )
& ( ? [X5] :
( actual_world(X5)
& ? [X6,X7,X8,X9,X10,X11,X12,X13] :
( of(X5,X7,X6)
& man(X5,X6)
& jules_forename(X5,X7)
& forename(X5,X7)
& of(X5,X9,X8)
& man(X5,X8)
& vincent_forename(X5,X9)
& forename(X5,X9)
& proposition(X5,X11)
& agent(X5,X10,X8)
& theme(X5,X10,X11)
& event(X5,X10)
& present(X5,X10)
& think_believe_consider(X5,X10)
& accessible_world(X5,X11)
& ! [X14] :
( man(X11,X14)
=> ? [X15] :
( event(X11,X15)
& agent(X11,X15,X14)
& present(X11,X15)
& smoke(X11,X15) ) )
& man(X5,X12)
& state(X5,X13)
& be(X5,X13,X6,X12) ) )
=> ? [U] :
( actual_world(U)
& ? [V,W,X,Y,Z,X1,X2] :
( of(U,V,W)
& jules_forename(U,V)
& forename(U,V)
& of(U,X,W)
& man(U,W)
& vincent_forename(U,X)
& forename(U,X)
& proposition(U,Z)
& agent(U,Y,W)
& theme(U,Y,Z)
& event(U,Y)
& present(U,Y)
& think_believe_consider(U,Y)
& accessible_world(U,Z)
& ! [X3] :
( man(Z,X3)
=> ? [X4] :
( event(Z,X4)
& agent(Z,X4,X3)
& present(Z,X4)
& smoke(Z,X4) ) )
& man(U,X1)
& state(U,X2)
& be(U,X2,W,X1) ) ) ) ) ).
%--------------------------------------------------------------------------