TPTP Problem File: NLP212+1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : NLP212+1 : TPTP v9.0.0. Released v2.4.0.
% Domain : Natural Language Processing
% Problem : An old dirty white Chevy, problem 99
% Version : [Bos00b] axioms.
% English : Eliminating non-informative interpretations in the statement
% "An old dirty white chevy barrels down a lonely street in
% hollywood. Two young fellas are in the front seat. They are
% wearing cheap black coats. Jules is behind the wheel."
% Refs : [Bos00a] Bos (2000), DORIS: Discourse Oriented Representation a
% [Bos00b] Bos (2000), Applied Theorem Proving - Natural Language
% Source : [Bos00b]
% Names : doris189 [Bos00b]
% Status : CounterSatisfiable
% Rating : 0.00 v7.5.0, 0.20 v7.4.0, 0.00 v6.2.0, 0.27 v6.0.0, 0.23 v5.5.0, 0.25 v5.4.0, 0.29 v5.2.0, 0.33 v5.0.0, 0.14 v4.1.0, 0.60 v4.0.1, 0.40 v4.0.0, 0.25 v3.7.0, 0.00 v3.4.0, 0.50 v3.3.0, 0.33 v3.2.0, 0.50 v3.1.0, 0.67 v2.7.0, 0.83 v2.6.0, 0.75 v2.5.0, 1.00 v2.4.0
% Syntax : Number of formulae : 72 ( 1 unt; 0 def)
% Number of atoms : 244 ( 7 equ)
% Maximal formula atoms : 88 ( 3 avg)
% Number of connectives : 190 ( 18 ~; 1 |; 90 &)
% ( 1 <=>; 80 =>; 0 <=; 0 <~>)
% Maximal formula depth : 54 ( 5 avg)
% Maximal term depth : 1 ( 1 avg)
% Number of predicates : 72 ( 71 usr; 0 prp; 1-4 aty)
% Number of functors : 0 ( 0 usr; 0 con; --- aty)
% Number of variables : 189 ( 158 !; 31 ?)
% SPC : FOF_CSA_RFO_SEQ
% Comments :
%--------------------------------------------------------------------------
fof(ax1,axiom,
! [U,V] :
( jules_forename(U,V)
=> forename(U,V) ) ).
fof(ax2,axiom,
! [U,V] :
( forename(U,V)
=> relname(U,V) ) ).
fof(ax3,axiom,
! [U,V] :
( furniture(U,V)
=> instrumentality(U,V) ) ).
fof(ax4,axiom,
! [U,V] :
( seat(U,V)
=> furniture(U,V) ) ).
fof(ax5,axiom,
! [U,V] :
( frontseat(U,V)
=> seat(U,V) ) ).
fof(ax6,axiom,
! [U,V] :
( location(U,V)
=> object(U,V) ) ).
fof(ax7,axiom,
! [U,V] :
( city(U,V)
=> location(U,V) ) ).
fof(ax8,axiom,
! [U,V] :
( hollywood_placename(U,V)
=> placename(U,V) ) ).
fof(ax9,axiom,
! [U,V] :
( abstraction(U,V)
=> unisex(U,V) ) ).
fof(ax10,axiom,
! [U,V] :
( abstraction(U,V)
=> general(U,V) ) ).
fof(ax11,axiom,
! [U,V] :
( abstraction(U,V)
=> nonhuman(U,V) ) ).
fof(ax12,axiom,
! [U,V] :
( abstraction(U,V)
=> thing(U,V) ) ).
fof(ax13,axiom,
! [U,V] :
( relation(U,V)
=> abstraction(U,V) ) ).
fof(ax14,axiom,
! [U,V] :
( relname(U,V)
=> relation(U,V) ) ).
fof(ax15,axiom,
! [U,V] :
( placename(U,V)
=> relname(U,V) ) ).
fof(ax16,axiom,
! [U,V] :
( transport(U,V)
=> instrumentality(U,V) ) ).
fof(ax17,axiom,
! [U,V] :
( vehicle(U,V)
=> transport(U,V) ) ).
fof(ax18,axiom,
! [U,V] :
( car(U,V)
=> vehicle(U,V) ) ).
fof(ax19,axiom,
! [U,V] :
( chevy(U,V)
=> car(U,V) ) ).
fof(ax20,axiom,
! [U,V] :
( way(U,V)
=> artifact(U,V) ) ).
fof(ax21,axiom,
! [U,V] :
( street(U,V)
=> way(U,V) ) ).
fof(ax22,axiom,
! [U,V] :
( barrel(U,V)
=> event(U,V) ) ).
fof(ax23,axiom,
! [U,V] :
( two(U,V)
=> group(U,V) ) ).
fof(ax24,axiom,
! [U,V] :
( man(U,V)
=> male(U,V) ) ).
fof(ax25,axiom,
! [U,V] :
( human_person(U,V)
=> animate(U,V) ) ).
fof(ax26,axiom,
! [U,V] :
( human_person(U,V)
=> human(U,V) ) ).
fof(ax27,axiom,
! [U,V] :
( organism(U,V)
=> living(U,V) ) ).
fof(ax28,axiom,
! [U,V] :
( organism(U,V)
=> impartial(U,V) ) ).
fof(ax29,axiom,
! [U,V] :
( organism(U,V)
=> entity(U,V) ) ).
fof(ax30,axiom,
! [U,V] :
( human_person(U,V)
=> organism(U,V) ) ).
fof(ax31,axiom,
! [U,V] :
( man(U,V)
=> human_person(U,V) ) ).
fof(ax32,axiom,
! [U,V] :
( fellow(U,V)
=> man(U,V) ) ).
fof(ax33,axiom,
! [U,V] :
( wear(U,V)
=> event(U,V) ) ).
fof(ax34,axiom,
! [U,V] :
( set(U,V)
=> multiple(U,V) ) ).
fof(ax35,axiom,
! [U,V] :
( group(U,V)
=> set(U,V) ) ).
fof(ax36,axiom,
! [U,V] :
( clothes(U,V)
=> artifact(U,V) ) ).
fof(ax37,axiom,
! [U,V] :
( coat(U,V)
=> clothes(U,V) ) ).
fof(ax38,axiom,
! [U,V] :
( object(U,V)
=> unisex(U,V) ) ).
fof(ax39,axiom,
! [U,V] :
( object(U,V)
=> impartial(U,V) ) ).
fof(ax40,axiom,
! [U,V] :
( object(U,V)
=> nonliving(U,V) ) ).
fof(ax41,axiom,
! [U,V] :
( entity(U,V)
=> existent(U,V) ) ).
fof(ax42,axiom,
! [U,V] :
( entity(U,V)
=> specific(U,V) ) ).
fof(ax43,axiom,
! [U,V] :
( entity(U,V)
=> thing(U,V) ) ).
fof(ax44,axiom,
! [U,V] :
( object(U,V)
=> entity(U,V) ) ).
fof(ax45,axiom,
! [U,V] :
( artifact(U,V)
=> object(U,V) ) ).
fof(ax46,axiom,
! [U,V] :
( instrumentality(U,V)
=> artifact(U,V) ) ).
fof(ax47,axiom,
! [U,V] :
( device(U,V)
=> instrumentality(U,V) ) ).
fof(ax48,axiom,
! [U,V] :
( wheel(U,V)
=> device(U,V) ) ).
fof(ax49,axiom,
! [U,V] :
( event(U,V)
=> eventuality(U,V) ) ).
fof(ax50,axiom,
! [U,V] :
( state(U,V)
=> event(U,V) ) ).
fof(ax51,axiom,
! [U,V] :
( eventuality(U,V)
=> unisex(U,V) ) ).
fof(ax52,axiom,
! [U,V] :
( eventuality(U,V)
=> nonexistent(U,V) ) ).
fof(ax53,axiom,
! [U,V] :
( eventuality(U,V)
=> specific(U,V) ) ).
fof(ax54,axiom,
! [U,V] :
( thing(U,V)
=> singleton(U,V) ) ).
fof(ax55,axiom,
! [U,V] :
( eventuality(U,V)
=> thing(U,V) ) ).
fof(ax56,axiom,
! [U,V] :
( state(U,V)
=> eventuality(U,V) ) ).
fof(ax57,axiom,
! [U,V] :
( animate(U,V)
=> ~ nonliving(U,V) ) ).
fof(ax58,axiom,
! [U,V] :
( existent(U,V)
=> ~ nonexistent(U,V) ) ).
fof(ax59,axiom,
! [U,V] :
( nonhuman(U,V)
=> ~ human(U,V) ) ).
fof(ax60,axiom,
! [U,V] :
( nonliving(U,V)
=> ~ living(U,V) ) ).
fof(ax61,axiom,
! [U,V] :
( singleton(U,V)
=> ~ multiple(U,V) ) ).
fof(ax62,axiom,
! [U,V] :
( specific(U,V)
=> ~ general(U,V) ) ).
fof(ax63,axiom,
! [U,V] :
( unisex(U,V)
=> ~ male(U,V) ) ).
fof(ax64,axiom,
! [U,V] :
( white(U,V)
=> ~ black(U,V) ) ).
fof(ax65,axiom,
! [U,V] :
( young(U,V)
=> ~ old(U,V) ) ).
fof(ax66,axiom,
! [U,V,W] :
( ( entity(U,V)
& forename(U,W)
& of(U,W,V) )
=> ~ ? [X] :
( forename(U,X)
& X != W
& of(U,X,V) ) ) ).
fof(ax67,axiom,
! [U,V,W] :
( ( entity(U,V)
& placename(U,W)
& of(U,W,V) )
=> ~ ? [X] :
( placename(U,X)
& X != W
& of(U,X,V) ) ) ).
fof(ax68,axiom,
! [U,V] :
( two(U,V)
<=> ? [W] :
( member(U,W,V)
& ? [X] :
( member(U,X,V)
& X != W
& ! [Y] :
( member(U,Y,V)
=> ( Y = X
| Y = W ) ) ) ) ) ).
fof(ax69,axiom,
! [U,V,W,X] :
( ( nonreflexive(U,V)
& agent(U,V,W)
& patient(U,V,X) )
=> W != X ) ).
fof(ax70,axiom,
! [U] :
~ ? [V] : member(U,V,V) ).
fof(ax71,axiom,
! [U,V,W,X] :
( be(U,V,W,X)
=> W = X ) ).
fof(co1,conjecture,
~ ( ? [U] :
( actual_world(U)
& ? [V,W,X,Y,Z,X1,X2] :
( frontseat(U,V)
& chevy(U,W)
& white(U,W)
& dirty(U,W)
& old(U,W)
& of(U,X,Y)
& city(U,Y)
& hollywood_placename(U,X)
& placename(U,X)
& street(U,Y)
& lonely(U,Y)
& event(U,Z)
& agent(U,Z,W)
& present(U,Z)
& barrel(U,Z)
& down(U,Z,Y)
& in(U,Z,Y)
& ! [X3] :
( member(U,X3,X1)
=> ? [X4,X5] :
( state(U,X4)
& be(U,X4,X3,X5)
& in(U,X5,V) ) )
& two(U,X1)
& group(U,X1)
& ! [X6] :
( member(U,X6,X1)
=> ( fellow(U,X6)
& young(U,X6) ) )
& ! [X7] :
( member(U,X7,X2)
=> ! [X8] :
( member(U,X8,X1)
=> ? [X9] :
( event(U,X9)
& agent(U,X9,X8)
& patient(U,X9,X7)
& present(U,X9)
& nonreflexive(U,X9)
& wear(U,X9) ) ) )
& group(U,X2)
& ! [X10] :
( member(U,X10,X2)
=> ( coat(U,X10)
& black(U,X10)
& cheap(U,X10) ) ) ) )
& ~ ? [X11] :
( actual_world(X11)
& ? [X12,X13,V,W,X,Y,Z,X1,X2,X14,X15] :
( of(X11,X13,X12)
& man(X11,X12)
& jules_forename(X11,X13)
& forename(X11,X13)
& wheel(X11,W)
& frontseat(X11,V)
& chevy(X11,W)
& white(X11,W)
& dirty(X11,W)
& old(X11,W)
& of(X11,X,Y)
& city(X11,Y)
& hollywood_placename(X11,X)
& placename(X11,X)
& street(X11,Y)
& lonely(X11,Y)
& event(X11,Z)
& agent(X11,Z,W)
& present(X11,Z)
& barrel(X11,Z)
& down(X11,Z,Y)
& in(X11,Z,Y)
& ! [X3] :
( member(X11,X3,X1)
=> ? [X4,X5] :
( state(X11,X4)
& be(X11,X4,X3,X5)
& in(X11,X5,V) ) )
& two(X11,X1)
& group(X11,X1)
& ! [X6] :
( member(X11,X6,X1)
=> ( fellow(X11,X6)
& young(X11,X6) ) )
& ! [X7] :
( member(X11,X7,X2)
=> ! [X8] :
( member(X11,X8,X1)
=> ? [X9] :
( event(X11,X9)
& agent(X11,X9,X8)
& patient(X11,X9,X7)
& present(X11,X9)
& nonreflexive(X11,X9)
& wear(X11,X9) ) ) )
& group(X11,X2)
& ! [X10] :
( member(X11,X10,X2)
=> ( coat(X11,X10)
& black(X11,X10)
& cheap(X11,X10) ) )
& state(X11,X14)
& be(X11,X14,X12,X15)
& behind(X11,X15,W) ) ) ) ).
%--------------------------------------------------------------------------