TPTP Problem File: NLP040+1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : NLP040+1 : TPTP v9.0.0. Released v2.4.0.
% Domain : Natural Language Processing
% Problem : Three young guys, problem 15
% Version : [Bos00b] axioms.
% English : Eliminating inconsistent interpretations in the statement
% "Three young guys sit at a table with hamburgers."
% Refs : [Bos00a] Bos (2000), DORIS: Discourse Oriented Representation a
% [Bos00b] Bos (2000), Applied Theorem Proving - Natural Language
% Source : [Bos00b]
% Names : doris017 [Bos00b]
% Status : CounterSatisfiable
% Rating : 0.00 v7.5.0, 0.20 v7.4.0, 0.00 v6.1.0, 0.09 v6.0.0, 0.08 v5.5.0, 0.00 v4.1.0, 0.20 v4.0.1, 0.00 v2.7.0, 0.17 v2.6.0, 0.00 v2.4.0
% Syntax : Number of formulae : 43 ( 1 unt; 0 def)
% Number of atoms : 110 ( 6 equ)
% Maximal formula atoms : 18 ( 2 avg)
% Number of connectives : 77 ( 10 ~; 2 |; 19 &)
% ( 1 <=>; 45 =>; 0 <=; 0 <~>)
% Maximal formula depth : 20 ( 5 avg)
% Maximal term depth : 1 ( 1 avg)
% Number of predicates : 42 ( 41 usr; 0 prp; 1-3 aty)
% Number of functors : 0 ( 0 usr; 0 con; --- aty)
% Number of variables : 97 ( 88 !; 9 ?)
% SPC : FOF_CSA_RFO_SEQ
% Comments :
%--------------------------------------------------------------------------
fof(ax1,axiom,
! [U,V] :
( artifact(U,V)
=> object(U,V) ) ).
fof(ax2,axiom,
! [U,V] :
( instrumentality(U,V)
=> artifact(U,V) ) ).
fof(ax3,axiom,
! [U,V] :
( furniture(U,V)
=> instrumentality(U,V) ) ).
fof(ax4,axiom,
! [U,V] :
( table(U,V)
=> furniture(U,V) ) ).
fof(ax5,axiom,
! [U,V] :
( eventuality(U,V)
=> unisex(U,V) ) ).
fof(ax6,axiom,
! [U,V] :
( eventuality(U,V)
=> nonexistent(U,V) ) ).
fof(ax7,axiom,
! [U,V] :
( eventuality(U,V)
=> specific(U,V) ) ).
fof(ax8,axiom,
! [U,V] :
( eventuality(U,V)
=> thing(U,V) ) ).
fof(ax9,axiom,
! [U,V] :
( event(U,V)
=> eventuality(U,V) ) ).
fof(ax10,axiom,
! [U,V] :
( sit(U,V)
=> event(U,V) ) ).
fof(ax11,axiom,
! [U,V] :
( object(U,V)
=> unisex(U,V) ) ).
fof(ax12,axiom,
! [U,V] :
( object(U,V)
=> impartial(U,V) ) ).
fof(ax13,axiom,
! [U,V] :
( object(U,V)
=> nonliving(U,V) ) ).
fof(ax14,axiom,
! [U,V] :
( object(U,V)
=> entity(U,V) ) ).
fof(ax15,axiom,
! [U,V] :
( substance_matter(U,V)
=> object(U,V) ) ).
fof(ax16,axiom,
! [U,V] :
( food(U,V)
=> substance_matter(U,V) ) ).
fof(ax17,axiom,
! [U,V] :
( meat(U,V)
=> food(U,V) ) ).
fof(ax18,axiom,
! [U,V] :
( burger(U,V)
=> meat(U,V) ) ).
fof(ax19,axiom,
! [U,V] :
( hamburger(U,V)
=> burger(U,V) ) ).
fof(ax20,axiom,
! [U,V] :
( three(U,V)
=> group(U,V) ) ).
fof(ax21,axiom,
! [U,V] :
( set(U,V)
=> multiple(U,V) ) ).
fof(ax22,axiom,
! [U,V] :
( group(U,V)
=> set(U,V) ) ).
fof(ax23,axiom,
! [U,V] :
( man(U,V)
=> male(U,V) ) ).
fof(ax24,axiom,
! [U,V] :
( human_person(U,V)
=> animate(U,V) ) ).
fof(ax25,axiom,
! [U,V] :
( human_person(U,V)
=> human(U,V) ) ).
fof(ax26,axiom,
! [U,V] :
( organism(U,V)
=> living(U,V) ) ).
fof(ax27,axiom,
! [U,V] :
( organism(U,V)
=> impartial(U,V) ) ).
fof(ax28,axiom,
! [U,V] :
( entity(U,V)
=> existent(U,V) ) ).
fof(ax29,axiom,
! [U,V] :
( entity(U,V)
=> specific(U,V) ) ).
fof(ax30,axiom,
! [U,V] :
( thing(U,V)
=> singleton(U,V) ) ).
fof(ax31,axiom,
! [U,V] :
( entity(U,V)
=> thing(U,V) ) ).
fof(ax32,axiom,
! [U,V] :
( organism(U,V)
=> entity(U,V) ) ).
fof(ax33,axiom,
! [U,V] :
( human_person(U,V)
=> organism(U,V) ) ).
fof(ax34,axiom,
! [U,V] :
( man(U,V)
=> human_person(U,V) ) ).
fof(ax35,axiom,
! [U,V] :
( guy(U,V)
=> man(U,V) ) ).
fof(ax36,axiom,
! [U,V] :
( animate(U,V)
=> ~ nonliving(U,V) ) ).
fof(ax37,axiom,
! [U,V] :
( existent(U,V)
=> ~ nonexistent(U,V) ) ).
fof(ax38,axiom,
! [U,V] :
( nonliving(U,V)
=> ~ living(U,V) ) ).
fof(ax39,axiom,
! [U,V] :
( singleton(U,V)
=> ~ multiple(U,V) ) ).
fof(ax40,axiom,
! [U,V] :
( unisex(U,V)
=> ~ male(U,V) ) ).
fof(ax41,axiom,
! [U,V] :
( three(U,V)
<=> ? [W] :
( member(U,W,V)
& ? [X] :
( member(U,X,V)
& X != W
& ? [Y] :
( member(U,Y,V)
& Y != X
& Y != W
& ! [Z] :
( member(U,Z,V)
=> ( Z = Y
| Z = X
| Z = W ) ) ) ) ) ) ).
fof(ax42,axiom,
! [U] :
~ ? [V] : member(U,V,V) ).
fof(co1,conjecture,
~ ? [U] :
( actual_world(U)
& ? [V] :
( ! [W] :
( member(U,W,V)
=> ? [X,Y] :
( table(U,X)
& ! [Z] :
( member(U,Z,Y)
=> ? [X1] :
( event(U,X1)
& agent(U,X1,Z)
& present(U,X1)
& sit(U,X1)
& at(U,X1,X)
& with(U,X1,W) ) )
& three(U,Y)
& group(U,Y)
& ! [X2] :
( member(U,X2,Y)
=> ( guy(U,X2)
& young(U,X2) ) ) ) )
& group(U,V)
& ! [X3] :
( member(U,X3,V)
=> hamburger(U,X3) ) ) ) ).
%--------------------------------------------------------------------------