TPTP Problem File: NLP036-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : NLP036-1 : TPTP v9.0.0. Released v2.4.0.
% Domain : Natural Language Processing
% Problem : Three young guys, problem 11
% Version : [Bos00b] axioms.
% English : Eliminating inconsistent interpretations in the statement
% "Three young guys sit at a table with hamburgers."
% Refs : [Bos00a] Bos (2000), DORIS: Discourse Oriented Representation a
% [Bos00b] Bos (2000), Applied Theorem Proving - Natural Language
% Source : [TPTP]
% Names :
% Status : Satisfiable
% Rating : 0.00 v7.4.0, 0.09 v7.3.0, 0.00 v5.4.0, 0.10 v5.3.0, 0.11 v5.2.0, 0.10 v5.0.0, 0.11 v4.1.0, 0.00 v2.5.0, 0.33 v2.4.0
% Syntax : Number of clauses : 66 ( 3 unt; 5 nHn; 58 RR)
% Number of literals : 165 ( 21 equ; 93 neg)
% Maximal clause size : 8 ( 2 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 42 ( 41 usr; 0 prp; 1-3 aty)
% Number of functors : 9 ( 9 usr; 2 con; 0-5 aty)
% Number of variables : 162 ( 32 sgn)
% SPC : CNF_SAT_RFO_EQU_NUE
% Comments : Created from NLP036+1.p using FLOTTER
%--------------------------------------------------------------------------
cnf(clause1,axiom,
~ member(U,V,V) ).
cnf(clause2,axiom,
( ~ guy(U,V)
| man(U,V) ) ).
cnf(clause3,axiom,
( ~ man(U,V)
| human_person(U,V) ) ).
cnf(clause4,axiom,
( ~ human_person(U,V)
| organism(U,V) ) ).
cnf(clause5,axiom,
( ~ organism(U,V)
| entity(U,V) ) ).
cnf(clause6,axiom,
( ~ entity(U,V)
| thing(U,V) ) ).
cnf(clause7,axiom,
( ~ thing(U,V)
| singleton(U,V) ) ).
cnf(clause8,axiom,
( ~ entity(U,V)
| specific(U,V) ) ).
cnf(clause9,axiom,
( ~ entity(U,V)
| existent(U,V) ) ).
cnf(clause10,axiom,
( ~ organism(U,V)
| impartial(U,V) ) ).
cnf(clause11,axiom,
( ~ organism(U,V)
| living(U,V) ) ).
cnf(clause12,axiom,
( ~ human_person(U,V)
| human(U,V) ) ).
cnf(clause13,axiom,
( ~ human_person(U,V)
| animate(U,V) ) ).
cnf(clause14,axiom,
( ~ man(U,V)
| male(U,V) ) ).
cnf(clause15,axiom,
( ~ group(U,V)
| set(U,V) ) ).
cnf(clause16,axiom,
( ~ set(U,V)
| multiple(U,V) ) ).
cnf(clause17,axiom,
( ~ three(U,V)
| group(U,V) ) ).
cnf(clause18,axiom,
( ~ hamburger(U,V)
| burger(U,V) ) ).
cnf(clause19,axiom,
( ~ burger(U,V)
| meat(U,V) ) ).
cnf(clause20,axiom,
( ~ meat(U,V)
| food(U,V) ) ).
cnf(clause21,axiom,
( ~ food(U,V)
| substance_matter(U,V) ) ).
cnf(clause22,axiom,
( ~ substance_matter(U,V)
| object(U,V) ) ).
cnf(clause23,axiom,
( ~ object(U,V)
| entity(U,V) ) ).
cnf(clause24,axiom,
( ~ object(U,V)
| nonliving(U,V) ) ).
cnf(clause25,axiom,
( ~ object(U,V)
| impartial(U,V) ) ).
cnf(clause26,axiom,
( ~ object(U,V)
| unisex(U,V) ) ).
cnf(clause27,axiom,
( ~ sit(U,V)
| event(U,V) ) ).
cnf(clause28,axiom,
( ~ event(U,V)
| eventuality(U,V) ) ).
cnf(clause29,axiom,
( ~ eventuality(U,V)
| thing(U,V) ) ).
cnf(clause30,axiom,
( ~ eventuality(U,V)
| specific(U,V) ) ).
cnf(clause31,axiom,
( ~ eventuality(U,V)
| nonexistent(U,V) ) ).
cnf(clause32,axiom,
( ~ eventuality(U,V)
| unisex(U,V) ) ).
cnf(clause33,axiom,
( ~ table(U,V)
| furniture(U,V) ) ).
cnf(clause34,axiom,
( ~ furniture(U,V)
| instrumentality(U,V) ) ).
cnf(clause35,axiom,
( ~ instrumentality(U,V)
| artifact(U,V) ) ).
cnf(clause36,axiom,
( ~ artifact(U,V)
| object(U,V) ) ).
cnf(clause37,axiom,
( ~ male(U,V)
| ~ unisex(U,V) ) ).
cnf(clause38,axiom,
( ~ multiple(U,V)
| ~ singleton(U,V) ) ).
cnf(clause39,axiom,
( ~ living(U,V)
| ~ nonliving(U,V) ) ).
cnf(clause40,axiom,
( ~ nonexistent(U,V)
| ~ existent(U,V) ) ).
cnf(clause41,axiom,
( ~ nonliving(U,V)
| ~ animate(U,V) ) ).
cnf(clause42,axiom,
( ~ three(U,V)
| member(U,skf17(V,U),V) ) ).
cnf(clause43,axiom,
( ~ three(U,V)
| member(U,skf15(V,U),V) ) ).
cnf(clause44,axiom,
( ~ three(U,V)
| member(U,skf13(V,U),V) ) ).
cnf(clause45,axiom,
( skf17(U,V) != skf13(U,V)
| ~ three(V,U) ) ).
cnf(clause46,axiom,
( skf17(U,V) != skf15(U,V)
| ~ three(V,U) ) ).
cnf(clause47,axiom,
( skf15(U,V) != skf13(U,V)
| ~ three(V,U) ) ).
cnf(clause48,axiom,
( ~ member(U,V,W)
| ~ three(U,W)
| V = skf13(W,U)
| V = skf15(W,U)
| V = skf17(W,U) ) ).
cnf(clause49,axiom,
( skf18(U,V,W,X,Y) != U
| ~ member(Z,U,X1)
| ~ member(Z,X2,X1)
| ~ member(Z,X3,X1)
| three(Z,X1)
| U = X3
| U = X2
| X2 = X3 ) ).
cnf(clause50,axiom,
( skf18(U,V,W,X,Y) != V
| ~ member(Z,U,X1)
| ~ member(Z,V,X1)
| ~ member(Z,X2,X1)
| three(Z,X1)
| U = X2
| U = V
| V = X2 ) ).
cnf(clause51,axiom,
( skf18(U,V,W,X,Y) != W
| ~ member(Z,U,X1)
| ~ member(Z,V,X1)
| ~ member(Z,W,X1)
| three(Z,X1)
| U = W
| U = V
| V = W ) ).
cnf(clause52,axiom,
( ~ member(U,V,W)
| ~ member(U,X,W)
| ~ member(U,Y,W)
| three(U,W)
| member(U,skf18(V,X,Y,W,U),W)
| V = Y
| V = X
| X = Y ) ).
cnf(clause53,negated_conjecture,
actual_world(skc2) ).
cnf(clause54,negated_conjecture,
group(skc2,skc3) ).
cnf(clause55,negated_conjecture,
( ~ member(skc2,U,skc3)
| hamburger(skc2,U) ) ).
cnf(clause56,negated_conjecture,
( ~ member(skc2,U,skc3)
| group(skc2,skf9(V)) ) ).
cnf(clause57,negated_conjecture,
( ~ member(skc2,U,skc3)
| three(skc2,skf9(V)) ) ).
cnf(clause58,negated_conjecture,
( ~ member(skc2,U,skf9(V))
| ~ member(skc2,W,skc3)
| guy(skc2,U) ) ).
cnf(clause59,negated_conjecture,
( ~ member(skc2,U,skf9(V))
| ~ member(skc2,W,skc3)
| young(skc2,U) ) ).
cnf(clause60,negated_conjecture,
( ~ member(skc2,U,skf9(V))
| ~ member(skc2,V,skc3)
| table(skc2,skf11(W,X)) ) ).
cnf(clause61,negated_conjecture,
( ~ member(skc2,U,skf9(V))
| ~ member(skc2,V,skc3)
| sit(skc2,skf10(W,X)) ) ).
cnf(clause62,negated_conjecture,
( ~ member(skc2,U,skf9(V))
| ~ member(skc2,V,skc3)
| present(skc2,skf10(W,X)) ) ).
cnf(clause63,negated_conjecture,
( ~ member(skc2,U,skf9(V))
| ~ member(skc2,V,skc3)
| event(skc2,skf10(W,X)) ) ).
cnf(clause64,negated_conjecture,
( ~ member(skc2,U,skf9(V))
| ~ member(skc2,V,skc3)
| with(skc2,skf10(U,V),V) ) ).
cnf(clause65,negated_conjecture,
( ~ member(skc2,U,skf9(V))
| ~ member(skc2,V,skc3)
| agent(skc2,skf10(U,W),U) ) ).
cnf(clause66,negated_conjecture,
( ~ member(skc2,U,skf9(V))
| ~ member(skc2,V,skc3)
| at(skc2,skf10(W,X),skf11(X,W)) ) ).
%--------------------------------------------------------------------------