TPTP Problem File: NLP031+1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : NLP031+1 : TPTP v9.0.0. Released v2.4.0.
% Domain : Natural Language Processing
% Problem : Three young guys, problem 6
% Version : [Bos00b] axioms.
% English : Eliminating logically equivalent interpretations in the statement
% "Three young guys sit at a table with hamburgers."
% Refs : [Bos00a] Bos (2000), DORIS: Discourse Oriented Representation a
% [Bos00b] Bos (2000), Applied Theorem Proving - Natural Language
% Source : [Bos00b]
% Names : doris008 [Bos00b]
% Status : CounterSatisfiable
% Rating : 0.20 v9.0.0, 0.00 v5.4.0, 0.07 v5.3.0, 0.08 v5.2.0, 0.00 v4.1.0, 0.17 v4.0.1, 0.00 v3.4.0, 0.17 v3.3.0, 0.00 v3.2.0, 0.25 v3.1.0, 0.33 v2.7.0, 0.67 v2.6.0, 0.50 v2.5.0, 0.33 v2.4.0
% Syntax : Number of formulae : 1 ( 0 unt; 0 def)
% Number of atoms : 72 ( 0 equ)
% Maximal formula atoms : 72 ( 72 avg)
% Number of connectives : 73 ( 2 ~; 0 |; 53 &)
% ( 0 <=>; 18 =>; 0 <=; 0 <~>)
% Maximal formula depth : 23 ( 23 avg)
% Maximal term depth : 1 ( 1 avg)
% Number of predicates : 14 ( 14 usr; 0 prp; 1-3 aty)
% Number of functors : 0 ( 0 usr; 0 con; --- aty)
% Number of variables : 36 ( 16 !; 20 ?)
% SPC : FOF_CSA_RFO_NEQ
% Comments :
%--------------------------------------------------------------------------
fof(co1,conjecture,
~ ~ ( ( ? [U] :
( actual_world(U)
& ? [V] :
( ! [W] :
( member(U,W,V)
=> ? [X,Y] :
( table(U,X)
& ! [Z] :
( member(U,Z,Y)
=> ? [X1] :
( event(U,X1)
& agent(U,X1,W)
& present(U,X1)
& sit(U,X1)
& at(U,X1,X)
& with(U,X1,Z) ) )
& group(U,Y)
& ! [X2] :
( member(U,X2,Y)
=> hamburger(U,X2) ) ) )
& three(U,V)
& group(U,V)
& ! [X3] :
( member(U,X3,V)
=> ( guy(U,X3)
& young(U,X3) ) ) ) )
=> ? [X4] :
( actual_world(X4)
& ? [X5,X6] :
( table(X4,X5)
& ! [X7] :
( member(X4,X7,X6)
=> ? [X8] :
( ! [X9] :
( member(X4,X9,X8)
=> ? [X10] :
( event(X4,X10)
& agent(X4,X10,X7)
& present(X4,X10)
& sit(X4,X10)
& at(X4,X10,X5)
& with(X4,X10,X9) ) )
& group(X4,X8)
& ! [X11] :
( member(X4,X11,X8)
=> hamburger(X4,X11) ) ) )
& three(X4,X6)
& group(X4,X6)
& ! [X12] :
( member(X4,X12,X6)
=> ( guy(X4,X12)
& young(X4,X12) ) ) ) ) )
& ( ? [X4] :
( actual_world(X4)
& ? [X5,X6] :
( table(X4,X5)
& ! [X7] :
( member(X4,X7,X6)
=> ? [X8] :
( ! [X9] :
( member(X4,X9,X8)
=> ? [X10] :
( event(X4,X10)
& agent(X4,X10,X7)
& present(X4,X10)
& sit(X4,X10)
& at(X4,X10,X5)
& with(X4,X10,X9) ) )
& group(X4,X8)
& ! [X11] :
( member(X4,X11,X8)
=> hamburger(X4,X11) ) ) )
& three(X4,X6)
& group(X4,X6)
& ! [X12] :
( member(X4,X12,X6)
=> ( guy(X4,X12)
& young(X4,X12) ) ) ) )
=> ? [U] :
( actual_world(U)
& ? [V] :
( ! [W] :
( member(U,W,V)
=> ? [X,Y] :
( table(U,X)
& ! [Z] :
( member(U,Z,Y)
=> ? [X1] :
( event(U,X1)
& agent(U,X1,W)
& present(U,X1)
& sit(U,X1)
& at(U,X1,X)
& with(U,X1,Z) ) )
& group(U,Y)
& ! [X2] :
( member(U,X2,Y)
=> hamburger(U,X2) ) ) )
& three(U,V)
& group(U,V)
& ! [X3] :
( member(U,X3,V)
=> ( guy(U,X3)
& young(U,X3) ) ) ) ) ) ) ).
%--------------------------------------------------------------------------