TPTP Problem File: NLP028-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : NLP028-1 : TPTP v9.0.0. Released v2.4.0.
% Domain : Natural Language Processing
% Problem : Three young guys, problem 3
% Version : [Bos00b] axioms.
% English : Eliminating logically equivalent interpretations in the statement
% "Three young guys sit at a table with hamburgers."
% Refs : [Bos00a] Bos (2000), DORIS: Discourse Oriented Representation a
% [Bos00b] Bos (2000), Applied Theorem Proving - Natural Language
% Source : [TPTP]
% Names :
% Status : Satisfiable
% Rating : 0.00 v6.3.0, 0.33 v6.2.0, 0.20 v6.1.0, 0.00 v5.4.0, 0.44 v5.3.0, 0.43 v5.0.0, 0.50 v4.1.0, 0.43 v4.0.0, 0.50 v3.5.0, 0.43 v3.4.0, 0.50 v3.3.0, 0.67 v3.2.0, 0.80 v3.1.0, 0.71 v2.7.0, 0.80 v2.6.0, 0.75 v2.5.0, 0.67 v2.4.0
% Syntax : Number of clauses : 46 ( 2 unt; 13 nHn; 25 RR)
% Number of literals : 156 ( 0 equ; 98 neg)
% Maximal clause size : 8 ( 3 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 19 ( 19 usr; 1 prp; 0-4 aty)
% Number of functors : 18 ( 18 usr; 6 con; 0-4 aty)
% Number of variables : 198 ( 90 sgn)
% SPC : CNF_SAT_RFO_NEQ
% Comments : Created from NLP028+1.p using FLOTTER
%--------------------------------------------------------------------------
cnf(clause1,negated_conjecture,
actual_world(skc65) ).
cnf(clause2,negated_conjecture,
actual_world(skc6) ).
cnf(clause3,negated_conjecture,
( ssSkC0
| three(skc65,skc66) ) ).
cnf(clause4,negated_conjecture,
( ssSkC0
| group(skc65,skc66) ) ).
cnf(clause5,negated_conjecture,
( ssSkC0
| table(skc65,skc67) ) ).
cnf(clause6,negated_conjecture,
( ~ ssSkC0
| group(skc6,skc7) ) ).
cnf(clause7,negated_conjecture,
( ~ ssSkC0
| table(skc6,skc8) ) ).
cnf(clause8,negated_conjecture,
( ssSkC0
| ssSkP2(skc67,skc66,skc65) ) ).
cnf(clause9,negated_conjecture,
( ~ ssSkC0
| ssSkP3(skc8,skc7,skc6) ) ).
cnf(clause10,negated_conjecture,
( ~ member(skc65,U,skc66)
| ssSkC0
| guy(skc65,U) ) ).
cnf(clause11,negated_conjecture,
( ~ member(skc65,U,skc66)
| ssSkC0
| young(skc65,U) ) ).
cnf(clause12,negated_conjecture,
( ~ member(skc6,U,skc7)
| ~ ssSkC0
| hamburger(skc6,U) ) ).
cnf(clause13,negated_conjecture,
( ssSkP2(U,V,W)
| member(W,skf23(W,U,V),V) ) ).
cnf(clause14,negated_conjecture,
( ssSkP3(U,V,W)
| member(W,skf28(W,U,V),V) ) ).
cnf(clause15,negated_conjecture,
( ssSkP0(U,V,W,X)
| member(X,skf16(W,X,Y,Z),W) ) ).
cnf(clause16,negated_conjecture,
( ssSkP1(U,V,W,X)
| member(X,skf19(W,X,Y,Z),W) ) ).
cnf(clause17,negated_conjecture,
( ~ member(U,V,W)
| ~ ssSkP2(X,W,U)
| group(U,skf21(U,Y,Z)) ) ).
cnf(clause18,negated_conjecture,
( ~ member(U,V,W)
| ~ ssSkP3(X,W,U)
| three(U,skf26(U,Y,Z)) ) ).
cnf(clause19,negated_conjecture,
( ~ member(U,V,W)
| ~ ssSkP3(X,W,U)
| group(U,skf26(U,Y,Z)) ) ).
cnf(clause20,negated_conjecture,
( ~ member(U,V,W)
| ~ ssSkP0(X,Y,W,U)
| event(U,skf14(U,Z,X1,X2)) ) ).
cnf(clause21,negated_conjecture,
( ~ member(U,V,W)
| ~ ssSkP0(X,Y,W,U)
| present(U,skf14(U,Z,X1,X2)) ) ).
cnf(clause22,negated_conjecture,
( ~ member(U,V,W)
| ~ ssSkP0(X,Y,W,U)
| sit(U,skf14(U,Z,X1,X2)) ) ).
cnf(clause23,negated_conjecture,
( ~ member(U,V,W)
| ~ ssSkP1(X,Y,W,U)
| event(U,skf17(U,Z,X1,X2)) ) ).
cnf(clause24,negated_conjecture,
( ~ member(U,V,W)
| ~ ssSkP1(X,Y,W,U)
| present(U,skf17(U,Z,X1,X2)) ) ).
cnf(clause25,negated_conjecture,
( ~ member(U,V,W)
| ~ ssSkP1(X,Y,W,U)
| sit(U,skf17(U,Z,X1,X2)) ) ).
cnf(clause26,negated_conjecture,
( ~ member(U,V,W)
| ~ ssSkP2(X,W,U)
| ssSkP0(X,V,skf21(U,V,X),U) ) ).
cnf(clause27,negated_conjecture,
( ~ member(U,V,W)
| ~ ssSkP3(X,W,U)
| ssSkP1(V,X,skf26(U,X,V),U) ) ).
cnf(clause28,negated_conjecture,
( ~ member(U,V,W)
| ~ ssSkP0(X,Y,W,U)
| agent(U,skf14(U,V,X,Y),Y) ) ).
cnf(clause29,negated_conjecture,
( ~ member(U,V,W)
| ~ ssSkP0(X,Y,W,U)
| at(U,skf14(U,V,X,Z),X) ) ).
cnf(clause30,negated_conjecture,
( ~ member(U,V,W)
| ~ ssSkP0(X,Y,W,U)
| with(U,skf14(U,V,Z,X1),V) ) ).
cnf(clause31,negated_conjecture,
( ~ member(U,V,W)
| ~ ssSkP1(X,Y,W,U)
| agent(U,skf17(U,V,Z,X1),V) ) ).
cnf(clause32,negated_conjecture,
( ~ member(U,V,W)
| ~ ssSkP1(X,Y,W,U)
| at(U,skf17(U,V,X,Y),Y) ) ).
cnf(clause33,negated_conjecture,
( ~ member(U,V,W)
| ~ ssSkP1(X,Y,W,U)
| with(U,skf17(U,V,X,Z),X) ) ).
cnf(clause34,negated_conjecture,
( ~ member(U,V,skf21(U,W,X))
| ~ member(U,Y,Z)
| ~ ssSkP2(X1,Z,U)
| hamburger(U,V) ) ).
cnf(clause35,negated_conjecture,
( ~ member(U,V,skf26(U,W,X))
| ~ member(U,Y,Z)
| ~ ssSkP3(X1,Z,U)
| young(U,V) ) ).
cnf(clause36,negated_conjecture,
( ~ member(U,V,skf26(U,W,X))
| ~ member(U,Y,Z)
| ~ ssSkP3(X1,Z,U)
| guy(U,V) ) ).
cnf(clause37,negated_conjecture,
( ~ group(U,V)
| ~ hamburger(U,skf31(U,W))
| ~ ssSkP3(X,V,U)
| ~ table(U,X)
| ~ actual_world(U)
| ssSkC0 ) ).
cnf(clause38,negated_conjecture,
( ~ group(U,V)
| ~ ssSkP0(W,skf23(U,W,X),V,U)
| ssSkP2(W,Y,U)
| member(U,skf24(U,V),V) ) ).
cnf(clause39,negated_conjecture,
( ~ hamburger(U,skf24(U,V))
| ~ group(U,W)
| ~ ssSkP0(X,skf23(U,X,Y),W,U)
| ssSkP2(X,Z,U) ) ).
cnf(clause40,negated_conjecture,
( ~ group(U,V)
| ~ ssSkP3(W,V,U)
| ~ table(U,W)
| ~ actual_world(U)
| ssSkC0
| member(U,skf31(U,V),V) ) ).
cnf(clause41,negated_conjecture,
( ~ group(U,V)
| ~ three(U,V)
| ~ ssSkP1(skf28(U,W,X),W,V,U)
| ssSkP3(W,Y,U)
| member(U,skf29(U,V),V) ) ).
cnf(clause42,negated_conjecture,
( ~ three(U,V)
| ~ group(U,V)
| ~ ssSkP2(W,V,U)
| ~ table(U,W)
| ~ actual_world(U)
| ~ ssSkC0
| member(U,skf13(U,V),V) ) ).
cnf(clause43,negated_conjecture,
( ~ young(U,skf29(U,V))
| ~ guy(U,skf29(U,V))
| ~ group(U,W)
| ~ three(U,W)
| ~ ssSkP1(skf28(U,X,Y),X,W,U)
| ssSkP3(X,Z,U) ) ).
cnf(clause44,negated_conjecture,
( ~ three(U,V)
| ~ group(U,V)
| ~ young(U,skf13(U,W))
| ~ guy(U,skf13(U,W))
| ~ ssSkP2(X,V,U)
| ~ table(U,X)
| ~ actual_world(U)
| ~ ssSkC0 ) ).
cnf(clause45,negated_conjecture,
( ~ with(U,V,W)
| ~ at(U,V,X)
| ~ sit(U,V)
| ~ present(U,V)
| ~ agent(U,V,skf19(Y,U,W,X))
| ~ event(U,V)
| ssSkP1(W,X,Y,U) ) ).
cnf(clause46,negated_conjecture,
( ~ with(U,V,skf16(W,U,X,Y))
| ~ at(U,V,X)
| ~ sit(U,V)
| ~ present(U,V)
| ~ agent(U,V,Y)
| ~ event(U,V)
| ssSkP0(X,Y,W,U) ) ).
%--------------------------------------------------------------------------