TPTP Problem File: NLP024-10.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : NLP024-10 : TPTP v9.0.0. Released v7.5.0.
% Domain : Puzzles
% Problem : Mia wants to dance, problem 2
% Version : Especial.
% English :
% Refs : [CS18] Claessen & Smallbone (2018), Efficient Encodings of Fi
% : [Sma18] Smallbone (2018), Email to Geoff Sutcliffe
% Source : [Sma18]
% Names :
% Status : Satisfiable
% Rating : 0.29 v9.0.0, 0.22 v8.2.0, 0.20 v8.1.0, 0.25 v7.5.0
% Syntax : Number of clauses : 98 ( 98 unt; 0 nHn; 20 RR)
% Number of literals : 98 ( 98 equ; 1 neg)
% Maximal clause size : 1 ( 1 avg)
% Maximal term depth : 8 ( 1 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 53 ( 53 usr; 11 con; 0-10 aty)
% Number of variables : 203 ( 4 sgn)
% SPC : CNF_SAT_RFO_PEQ_UEQ
% Comments : Converted from NLP024-1 to UEQ using [CS18].
%------------------------------------------------------------------------------
cnf(ifeq_axiom,axiom,
ifeq4(A,A,B,C) = B ).
cnf(ifeq_axiom_001,axiom,
ifeq3(A,A,B,C) = B ).
cnf(ifeq_axiom_002,axiom,
ifeq2(A,A,B,C) = B ).
cnf(ifeq_axiom_003,axiom,
ifeq(A,A,B,C) = B ).
cnf(clause1,axiom,
ifeq3(dance(U,V),true,event(U,V),true) = true ).
cnf(clause2,axiom,
ifeq3(event(U,V),true,eventuality(U,V),true) = true ).
cnf(clause3,axiom,
ifeq3(eventuality(U,V),true,thing(U,V),true) = true ).
cnf(clause4,axiom,
ifeq3(thing(U,V),true,singleton(U,V),true) = true ).
cnf(clause5,axiom,
ifeq3(eventuality(U,V),true,specific(U,V),true) = true ).
cnf(clause6,axiom,
ifeq3(eventuality(U,V),true,nonexistent(U,V),true) = true ).
cnf(clause7,axiom,
ifeq3(eventuality(U,V),true,unisex(U,V),true) = true ).
cnf(clause8,axiom,
ifeq3(desire_want(U,V),true,event(U,V),true) = true ).
cnf(clause9,axiom,
ifeq3(proposition(U,V),true,relation(U,V),true) = true ).
cnf(clause10,axiom,
ifeq3(relation(U,V),true,abstraction(U,V),true) = true ).
cnf(clause11,axiom,
ifeq3(abstraction(U,V),true,thing(U,V),true) = true ).
cnf(clause12,axiom,
ifeq3(abstraction(U,V),true,nonhuman(U,V),true) = true ).
cnf(clause13,axiom,
ifeq3(abstraction(U,V),true,general(U,V),true) = true ).
cnf(clause14,axiom,
ifeq3(abstraction(U,V),true,unisex(U,V),true) = true ).
cnf(clause15,axiom,
ifeq3(forename(U,V),true,relname(U,V),true) = true ).
cnf(clause16,axiom,
ifeq3(relname(U,V),true,relation(U,V),true) = true ).
cnf(clause17,axiom,
ifeq3(mia_forename(U,V),true,forename(U,V),true) = true ).
cnf(clause18,axiom,
ifeq3(woman(U,V),true,human_person(U,V),true) = true ).
cnf(clause19,axiom,
ifeq3(human_person(U,V),true,organism(U,V),true) = true ).
cnf(clause20,axiom,
ifeq3(organism(U,V),true,entity(U,V),true) = true ).
cnf(clause21,axiom,
ifeq3(entity(U,V),true,thing(U,V),true) = true ).
cnf(clause22,axiom,
ifeq3(entity(U,V),true,specific(U,V),true) = true ).
cnf(clause23,axiom,
ifeq3(entity(U,V),true,existent(U,V),true) = true ).
cnf(clause24,axiom,
ifeq3(organism(U,V),true,impartial(U,V),true) = true ).
cnf(clause25,axiom,
ifeq3(organism(U,V),true,living(U,V),true) = true ).
cnf(clause26,axiom,
ifeq3(human_person(U,V),true,human(U,V),true) = true ).
cnf(clause27,axiom,
ifeq3(human_person(U,V),true,animate(U,V),true) = true ).
cnf(clause28,axiom,
ifeq3(woman(U,V),true,female(U,V),true) = true ).
cnf(clause29,axiom,
ifeq3(vincent_forename(U,V),true,forename(U,V),true) = true ).
cnf(clause30,axiom,
ifeq3(man(U,V),true,human_person(U,V),true) = true ).
cnf(clause31,axiom,
ifeq3(man(U,V),true,male(U,V),true) = true ).
cnf(clause38,axiom,
ifeq3(accessible_world(U,V),true,ifeq3(dance(U,W),true,dance(V,W),true),true) = true ).
cnf(clause39,axiom,
ifeq3(accessible_world(U,V),true,ifeq3(event(U,W),true,event(V,W),true),true) = true ).
cnf(clause40,axiom,
ifeq3(accessible_world(U,V),true,ifeq3(eventuality(U,W),true,eventuality(V,W),true),true) = true ).
cnf(clause41,axiom,
ifeq3(accessible_world(U,V),true,ifeq3(thing(U,W),true,thing(V,W),true),true) = true ).
cnf(clause42,axiom,
ifeq3(accessible_world(U,V),true,ifeq3(singleton(U,W),true,singleton(V,W),true),true) = true ).
cnf(clause43,axiom,
ifeq3(accessible_world(U,V),true,ifeq3(specific(U,W),true,specific(V,W),true),true) = true ).
cnf(clause44,axiom,
ifeq3(accessible_world(U,V),true,ifeq3(nonexistent(U,W),true,nonexistent(V,W),true),true) = true ).
cnf(clause45,axiom,
ifeq3(accessible_world(U,V),true,ifeq3(unisex(U,W),true,unisex(V,W),true),true) = true ).
cnf(clause46,axiom,
ifeq3(present(U,W),true,ifeq3(accessible_world(U,V),true,present(V,W),true),true) = true ).
cnf(clause47,axiom,
ifeq3(accessible_world(U,V),true,ifeq3(desire_want(U,W),true,desire_want(V,W),true),true) = true ).
cnf(clause48,axiom,
ifeq3(accessible_world(U,V),true,ifeq3(proposition(U,W),true,proposition(V,W),true),true) = true ).
cnf(clause49,axiom,
ifeq3(accessible_world(U,V),true,ifeq3(relation(U,W),true,relation(V,W),true),true) = true ).
cnf(clause50,axiom,
ifeq3(accessible_world(U,V),true,ifeq3(abstraction(U,W),true,abstraction(V,W),true),true) = true ).
cnf(clause51,axiom,
ifeq3(accessible_world(U,V),true,ifeq3(nonhuman(U,W),true,nonhuman(V,W),true),true) = true ).
cnf(clause52,axiom,
ifeq3(accessible_world(U,V),true,ifeq3(general(U,W),true,general(V,W),true),true) = true ).
cnf(clause53,axiom,
ifeq3(accessible_world(U,V),true,ifeq3(forename(U,W),true,forename(V,W),true),true) = true ).
cnf(clause54,axiom,
ifeq3(accessible_world(U,V),true,ifeq3(relname(U,W),true,relname(V,W),true),true) = true ).
cnf(clause55,axiom,
ifeq3(accessible_world(U,V),true,ifeq3(mia_forename(U,W),true,mia_forename(V,W),true),true) = true ).
cnf(clause56,axiom,
ifeq3(accessible_world(U,V),true,ifeq3(woman(U,W),true,woman(V,W),true),true) = true ).
cnf(clause57,axiom,
ifeq3(accessible_world(U,V),true,ifeq3(human_person(U,W),true,human_person(V,W),true),true) = true ).
cnf(clause58,axiom,
ifeq3(accessible_world(U,V),true,ifeq3(organism(U,W),true,organism(V,W),true),true) = true ).
cnf(clause59,axiom,
ifeq3(accessible_world(U,V),true,ifeq3(entity(U,W),true,entity(V,W),true),true) = true ).
cnf(clause60,axiom,
ifeq3(accessible_world(U,V),true,ifeq3(existent(U,W),true,existent(V,W),true),true) = true ).
cnf(clause61,axiom,
ifeq3(accessible_world(U,V),true,ifeq3(impartial(U,W),true,impartial(V,W),true),true) = true ).
cnf(clause62,axiom,
ifeq3(accessible_world(U,V),true,ifeq3(living(U,W),true,living(V,W),true),true) = true ).
cnf(clause63,axiom,
ifeq3(accessible_world(U,V),true,ifeq3(human(U,W),true,human(V,W),true),true) = true ).
cnf(clause64,axiom,
ifeq3(accessible_world(U,V),true,ifeq3(animate(U,W),true,animate(V,W),true),true) = true ).
cnf(clause65,axiom,
ifeq3(accessible_world(U,V),true,ifeq3(female(U,W),true,female(V,W),true),true) = true ).
cnf(clause66,axiom,
ifeq3(accessible_world(U,V),true,ifeq3(vincent_forename(U,W),true,vincent_forename(V,W),true),true) = true ).
cnf(clause67,axiom,
ifeq3(accessible_world(U,V),true,ifeq3(man(U,W),true,man(V,W),true),true) = true ).
cnf(clause68,axiom,
ifeq3(accessible_world(U,V),true,ifeq3(male(U,W),true,male(V,W),true),true) = true ).
cnf(clause69,axiom,
ifeq3(agent(U,W,X),true,ifeq3(accessible_world(U,V),true,agent(V,W,X),true),true) = true ).
cnf(clause70,axiom,
ifeq3(theme(U,W,X),true,ifeq3(accessible_world(U,V),true,theme(V,W,X),true),true) = true ).
cnf(clause71,axiom,
ifeq3(of(U,W,X),true,ifeq3(accessible_world(U,V),true,of(V,W,X),true),true) = true ).
cnf(clause72,axiom,
ifeq4(of(U,W,X),true,ifeq4(of(U,V,X),true,ifeq4(entity(U,X),true,ifeq4(forename(U,W),true,ifeq4(forename(U,V),true,W,V),V),V),V),V) = V ).
cnf(clause73,axiom,
ifeq4(theme(U,Y,X),true,ifeq4(theme(U,V,W),true,ifeq4(proposition(U,X),true,ifeq4(proposition(U,W),true,ifeq4(desire_want(U,Y),true,ifeq4(desire_want(U,V),true,X,W),W),W),W),W),W) = W ).
cnf(clause74,negated_conjecture,
actual_world(skc8) = true ).
cnf(clause75,negated_conjecture,
man(skc8,skc15) = true ).
cnf(clause76,negated_conjecture,
event(skc10,skc13) = true ).
cnf(clause77,negated_conjecture,
woman(skc8,skc12) = true ).
cnf(clause78,negated_conjecture,
present(skc10,skc13) = true ).
cnf(clause79,negated_conjecture,
dance(skc10,skc13) = true ).
cnf(clause80,negated_conjecture,
forename(skc8,skc11) = true ).
cnf(clause81,negated_conjecture,
mia_forename(skc8,skc11) = true ).
cnf(clause82,negated_conjecture,
proposition(skc8,skc10) = true ).
cnf(clause83,negated_conjecture,
accessible_world(skc8,skc10) = true ).
cnf(clause84,negated_conjecture,
desire_want(skc8,skc9) = true ).
cnf(clause85,negated_conjecture,
present(skc8,skc9) = true ).
cnf(clause86,negated_conjecture,
forename(skc8,skc14) = true ).
cnf(clause87,negated_conjecture,
vincent_forename(skc8,skc14) = true ).
cnf(clause88,negated_conjecture,
of(skc8,skc14,skc15) = true ).
cnf(clause89,negated_conjecture,
of(skc8,skc11,skc12) = true ).
cnf(clause90,negated_conjecture,
agent(skc8,skc9,skc12) = true ).
cnf(clause91,negated_conjecture,
agent(skc10,skc13,skc12) = true ).
cnf(clause92,negated_conjecture,
theme(skc8,skc9,skc10) = true ).
cnf(clause32,axiom,
ifeq2(tuple2(unisex(U,V),male(U,V)),tuple2(true,true),a,b) = b ).
cnf(clause33,axiom,
ifeq2(tuple2(unisex(U,V),female(U,V)),tuple2(true,true),a,b) = b ).
cnf(clause34,axiom,
ifeq2(tuple2(specific(U,V),general(U,V)),tuple2(true,true),a,b) = b ).
cnf(clause35,axiom,
ifeq2(tuple2(nonhuman(U,V),human(U,V)),tuple2(true,true),a,b) = b ).
cnf(clause36,axiom,
ifeq2(tuple2(female(U,V),male(U,V)),tuple2(true,true),a,b) = b ).
cnf(clause37,axiom,
ifeq2(tuple2(nonexistent(U,V),existent(U,V)),tuple2(true,true),a,b) = b ).
cnf(clause93,negated_conjecture,
ifeq(tuple(dance(V,W),event(V,W),desire_want(skc8,U),proposition(skc8,V),accessible_world(skc8,V),present(V,W),present(skc8,U),agent(V,W,skc15),agent(skc8,U,skc15),theme(skc8,U,V)),tuple(true,true,true,true,true,true,true,true,true,true),a,b) = b ).
cnf(goal,negated_conjecture,
a != b ).
%------------------------------------------------------------------------------