TPTP Problem File: NLP021+1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : NLP021+1 : TPTP v9.0.0. Released v2.4.0.
% Domain : Natural Language Processing
% Problem : "The old dirty white Chevy" problem 21
% Version : [Bos00] axioms.
% English : A problem generated by the DORIS [Bos00] system when parsing
% the statement "The old dirty white Chevy barrels down a lonely
% street in Hollywood".
% Refs : [Bos00] Bos (2000), DORIS: Discourse Oriented Representation an
% [Bau99] Baumgartner (1999), FTP'2000 - Problem Sets
% Source : [Bau99]
% Names :
% Status : CounterSatisfiable
% Rating : 0.00 v7.5.0, 0.20 v7.4.0, 0.00 v6.1.0, 0.09 v6.0.0, 0.08 v5.5.0, 0.00 v4.1.0, 0.40 v4.0.1, 0.20 v4.0.0, 0.00 v3.4.0, 0.17 v3.2.0, 0.00 v3.1.0, 0.17 v2.6.0, 0.00 v2.4.0
% Syntax : Number of formulae : 43 ( 0 unt; 0 def)
% Number of atoms : 119 ( 4 equ)
% Maximal formula atoms : 28 ( 2 avg)
% Number of connectives : 87 ( 11 ~; 0 |; 33 &)
% ( 2 <=>; 41 =>; 0 <=; 0 <~>)
% Maximal formula depth : 37 ( 4 avg)
% Maximal term depth : 1 ( 1 avg)
% Number of predicates : 43 ( 42 usr; 0 prp; 1-3 aty)
% Number of functors : 0 ( 0 usr; 0 con; --- aty)
% Number of variables : 61 ( 60 !; 1 ?)
% SPC : FOF_CSA_RFO_SEQ
% Comments :
%--------------------------------------------------------------------------
fof(ax1,axiom,
! [U] :
( fellow(U)
=> man(U) ) ).
fof(ax2,axiom,
! [U] :
( man(U)
=> human(U) ) ).
fof(ax3,axiom,
! [U] :
( human(U)
=> organism(U) ) ).
fof(ax4,axiom,
! [U] :
( organism(U)
=> entity(U) ) ).
fof(ax5,axiom,
! [U] :
( organism(U)
=> ~ object(U) ) ).
fof(ax6,axiom,
! [U] :
( front(U)
=> nonhuman(U) ) ).
fof(ax7,axiom,
! [U] :
( seat(U)
=> furniture(U) ) ).
fof(ax8,axiom,
! [U] :
( furniture(U)
=> instrumentality(U) ) ).
fof(ax9,axiom,
! [U] :
( furniture(U)
=> ~ transport(U) ) ).
fof(ax10,axiom,
! [U] :
( street(U)
=> way(U) ) ).
fof(ax11,axiom,
! [U] :
( way(U)
=> artifact(U) ) ).
fof(ax12,axiom,
! [U] :
( way(U)
=> ~ instrumentality(U) ) ).
fof(ax13,axiom,
! [U] :
( chevy(U)
=> car(U) ) ).
fof(ax14,axiom,
! [U] :
( car(U)
=> vehicle(U) ) ).
fof(ax15,axiom,
! [U] :
( vehicle(U)
=> transport(U) ) ).
fof(ax16,axiom,
! [U] :
( transport(U)
=> instrumentality(U) ) ).
fof(ax17,axiom,
! [U] :
( instrumentality(U)
=> artifact(U) ) ).
fof(ax18,axiom,
! [U] :
( artifact(U)
=> object(U) ) ).
fof(ax19,axiom,
! [U] :
( artifact(U)
=> ~ location(U) ) ).
fof(ax20,axiom,
! [U] :
( event(U)
=> eventuality(U) ) ).
fof(ax21,axiom,
! [U] :
( hollywood(U)
=> city(U) ) ).
fof(ax22,axiom,
! [U] :
( city(U)
=> location(U) ) ).
fof(ax23,axiom,
! [U] :
( location(U)
=> object(U) ) ).
fof(ax24,axiom,
! [U] :
( object(U)
=> entity(U) ) ).
fof(ax25,axiom,
! [U] :
( old(U)
=> ~ new(U) ) ).
fof(ax26,axiom,
! [U] :
( eventuality(U)
=> ~ entity(U) ) ).
fof(ax27,axiom,
! [U] :
( abstraction(U)
=> ~ entity(U) ) ).
fof(ax28,axiom,
! [U] :
( abstraction(U)
=> ~ eventuality(U) ) ).
fof(ax29,axiom,
! [U] :
( male(U)
=> ~ female(U) ) ).
fof(ax30,axiom,
! [U] :
( man(U)
=> ~ woman(U) ) ).
fof(ax31,axiom,
! [U] :
( man(U)
=> male(U) ) ).
fof(ax32,axiom,
! [U] :
( male(U)
=> human(U) ) ).
fof(ax33,axiom,
! [U] :
( female(U)
=> human(U) ) ).
fof(ax34,axiom,
! [U] :
( woman(U)
=> female(U) ) ).
fof(ax35,axiom,
! [U] :
( drs(U)
<=> proposition(U) ) ).
fof(ax36,axiom,
! [U] :
( nonhuman(U)
=> entity(U) ) ).
fof(ax37,axiom,
! [U] :
( human(U)
=> ~ nonhuman(U) ) ).
fof(ax38,axiom,
! [U,V,W] :
( ( have(U,V,W)
& human(V) )
<=> ( owner(V)
& of(V,W) ) ) ).
fof(ax39,axiom,
! [U,V,W] :
( ( have(U,V,W)
& nonhuman(V)
& nonhuman(W) )
=> partof(W,V) ) ).
fof(ax40,axiom,
! [U,V,W] :
( ( event(U)
& have(U,V,W) )
=> of(V,W) ) ).
fof(ax41,axiom,
! [U,V] :
( of(V,U)
=> ? [W] :
( event(W)
& have(W,U,V) ) ) ).
fof(ax42,axiom,
! [U,V,W] :
( ( partof(U,V)
& partof(U,W) )
=> V = W ) ).
fof(co1,conjecture,
! [U,V,W,X,Y,Z,X1,X3,X4] :
( ( seat(U)
& furniture(U)
& front(U)
& hollywood(V)
& city(V)
& event(W)
& street(X)
& way(X)
& lonely(X)
& chevy(Y)
& car(Y)
& white(Y)
& dirty(Y)
& old(Y)
& barrel(W,Y)
& down(W,X)
& in(W,V)
& fellow(Z)
& man(Z)
& young(Z)
& fellow(X1)
& man(X1)
& young(X1)
& Z = X3
& in(X3,U)
& X1 = X4
& in(X4,U) )
=> Z = X1 ) ).
%--------------------------------------------------------------------------