TPTP Problem File: NLP003+1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : NLP003+1 : TPTP v9.0.0. Released v2.4.0.
% Domain : Natural Language Processing
% Problem : "The old dirty white Chevy" problem 3
% Version : [Bos00] axioms.
% English : A problem generated by the DORIS [Bos00] system when parsing
% the statement "The old dirty white Chevy barrels down a lonely
% street in Hollywood".
% Refs : [Bos00] Bos (2000), DORIS: Discourse Oriented Representation an
% [Bau99] Baumgartner (1999), FTP'2000 - Problem Sets
% Source : [Bau99]
% Names :
% Status : CounterSatisfiable
% Rating : 0.00 v7.5.0, 0.20 v7.4.0, 0.00 v6.1.0, 0.09 v6.0.0, 0.00 v4.1.0, 0.20 v4.0.1, 0.00 v3.1.0, 0.17 v2.6.0, 0.00 v2.4.0
% Syntax : Number of formulae : 34 ( 0 unt; 0 def)
% Number of atoms : 87 ( 1 equ)
% Maximal formula atoms : 14 ( 2 avg)
% Number of connectives : 63 ( 10 ~; 0 |; 20 &)
% ( 2 <=>; 31 =>; 0 <=; 0 <~>)
% Maximal formula depth : 19 ( 4 avg)
% Maximal term depth : 1 ( 1 avg)
% Number of predicates : 37 ( 36 usr; 0 prp; 1-3 aty)
% Number of functors : 0 ( 0 usr; 0 con; --- aty)
% Number of variables : 47 ( 42 !; 5 ?)
% SPC : FOF_CSA_RFO_SEQ
% Comments :
%--------------------------------------------------------------------------
fof(ax1,axiom,
! [U] :
( chevy(U)
=> car(U) ) ).
fof(ax2,axiom,
! [U] :
( car(U)
=> vehicle(U) ) ).
fof(ax3,axiom,
! [U] :
( vehicle(U)
=> transport(U) ) ).
fof(ax4,axiom,
! [U] :
( transport(U)
=> instrumentality(U) ) ).
fof(ax5,axiom,
! [U] :
( instrumentality(U)
=> artifact(U) ) ).
fof(ax6,axiom,
! [U] :
( instrumentality(U)
=> ~ way(U) ) ).
fof(ax7,axiom,
! [U] :
( street(U)
=> way(U) ) ).
fof(ax8,axiom,
! [U] :
( way(U)
=> artifact(U) ) ).
fof(ax9,axiom,
! [U] :
( artifact(U)
=> object(U) ) ).
fof(ax10,axiom,
! [U] :
( artifact(U)
=> ~ location(U) ) ).
fof(ax11,axiom,
! [U] :
( event(U)
=> eventuality(U) ) ).
fof(ax12,axiom,
! [U] :
( hollywood(U)
=> city(U) ) ).
fof(ax13,axiom,
! [U] :
( city(U)
=> location(U) ) ).
fof(ax14,axiom,
! [U] :
( location(U)
=> object(U) ) ).
fof(ax15,axiom,
! [U] :
( object(U)
=> entity(U) ) ).
fof(ax16,axiom,
! [U] :
( old(U)
=> ~ new(U) ) ).
fof(ax17,axiom,
! [U] :
( eventuality(U)
=> ~ entity(U) ) ).
fof(ax18,axiom,
! [U] :
( abstraction(U)
=> ~ entity(U) ) ).
fof(ax19,axiom,
! [U] :
( abstraction(U)
=> ~ eventuality(U) ) ).
fof(ax20,axiom,
! [U] :
( male(U)
=> ~ female(U) ) ).
fof(ax21,axiom,
! [U] :
( man(U)
=> ~ woman(U) ) ).
fof(ax22,axiom,
! [U] :
( man(U)
=> male(U) ) ).
fof(ax23,axiom,
! [U] :
( male(U)
=> human(U) ) ).
fof(ax24,axiom,
! [U] :
( female(U)
=> human(U) ) ).
fof(ax25,axiom,
! [U] :
( woman(U)
=> female(U) ) ).
fof(ax26,axiom,
! [U] :
( drs(U)
<=> proposition(U) ) ).
fof(ax27,axiom,
! [U] :
( nonhuman(U)
=> entity(U) ) ).
fof(ax28,axiom,
! [U] :
( human(U)
=> ~ nonhuman(U) ) ).
fof(ax29,axiom,
! [U,V,W] :
( ( have(U,V,W)
& human(V) )
<=> ( owner(V)
& of(V,W) ) ) ).
fof(ax30,axiom,
! [U,V,W] :
( ( have(U,V,W)
& nonhuman(V)
& nonhuman(W) )
=> partof(W,V) ) ).
fof(ax31,axiom,
! [U,V,W] :
( ( event(U)
& have(U,V,W) )
=> of(V,W) ) ).
fof(ax32,axiom,
! [U,V] :
( of(V,U)
=> ? [W] :
( event(W)
& have(W,U,V) ) ) ).
fof(ax33,axiom,
! [U,V,W] :
( ( partof(U,V)
& partof(U,W) )
=> V = W ) ).
fof(co1,conjecture,
~ ? [U,V,W,X] :
( hollywood(U)
& city(U)
& event(V)
& chevy(W)
& car(W)
& white(W)
& dirty(W)
& old(W)
& street(X)
& way(X)
& lonely(X)
& barrel(V,W)
& down(V,X)
& in(V,U) ) ).
%--------------------------------------------------------------------------