TPTP Problem File: MSC030^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : MSC030^1 : TPTP v9.0.0. Released v7.0.0.
% Domain : Miscellaneous (Pigeon-hole principle)
% Problem : International Mathematical Olympiad, 1964, Problem 4
% Version : [Mat16] axioms : Especial.
% English : Seventeen people correspond by mail with one another - each one
% with all the rest. In their letters only three different topics
% are discussed. Each pair of correspondents deals with only one
% of these topics. Prove that there are at least three people who
% write to each other about the same topic.
% Refs : [Mat16] Matsuzaki (2016), Email to Geoff Sutcliffe
% : [MI+16] Matsuzaki et al. (2016), Race against the Teens - Benc
% Source : [Mat16]
% Names : IMO-1964-4.p [Mat16]
% Status : Theorem
% Rating : ? v7.0.0
% Syntax : Number of formulae : 3485 ( 728 unt;1199 typ; 0 def)
% Number of atoms : 6444 (2210 equ; 0 cnn)
% Maximal formula atoms : 30 ( 2 avg)
% Number of connectives : 39715 ( 104 ~; 233 |;1184 &;36064 @)
% (1095 <=>;1035 =>; 0 <=; 0 <~>)
% Maximal formula depth : 33 ( 8 avg)
% Number arithmetic : 4487 ( 379 atm;1203 fun; 957 num;1948 var)
% Number of types : 40 ( 36 usr; 3 ari)
% Number of type conns : 2408 (2408 >; 0 *; 0 +; 0 <<)
% Number of symbols : 1211 (1167 usr; 65 con; 0-9 aty)
% Number of variables : 8069 ( 405 ^;7091 !; 437 ?;8069 :)
% ( 136 !>; 0 ?*; 0 @-; 0 @+)
% SPC : TH1_THM_EQU_ARI
% Comments : Theory: PA(comb); Score: 6; Author: Takuya Matsuzaki;
% Generated: 2015-01-24
%------------------------------------------------------------------------------
include('Axioms/MAT001^0.ax').
%------------------------------------------------------------------------------
thf(p,conjecture,
! [V_G: 'ListOf' @ ( 'Triple' @ $int @ $int @ $int )] :
( ( ! [V_abt: 'Triple' @ $int @ $int @ $int] :
( ( 'member/2' @ ( 'Triple' @ $int @ $int @ $int ) @ V_abt @ V_G )
=> ? [V_a_dot_0: $int,V_b_dot_0: $int,V_t_dot_0: $int] :
( ( V_abt
= ( 'triple/3' @ $int @ $int @ $int @ V_a_dot_0 @ V_b_dot_0 @ V_t_dot_0 ) )
& ( $lesseq @ 1 @ V_a_dot_0 )
& ( $less @ V_a_dot_0 @ V_b_dot_0 )
& ( $lesseq @ V_b_dot_0 @ 17 )
& ( $lesseq @ 1 @ V_t_dot_0 )
& ( $lesseq @ V_t_dot_0 @ 3 ) ) )
& ! [V_a: $int,V_b: $int] :
( ( ( $lesseq @ 1 @ V_a )
& ( $less @ V_a @ V_b )
& ( $lesseq @ V_b @ 17 ) )
=> ( ? [V_t: $int] : ( 'member/2' @ ( 'Triple' @ $int @ $int @ $int ) @ ( 'triple/3' @ $int @ $int @ $int @ V_a @ V_b @ V_t ) @ V_G )
& ! [V_t1: $int,V_t2: $int] :
( ( ( 'member/2' @ ( 'Triple' @ $int @ $int @ $int ) @ ( 'triple/3' @ $int @ $int @ $int @ V_a @ V_b @ V_t1 ) @ V_G )
& ( 'member/2' @ ( 'Triple' @ $int @ $int @ $int ) @ ( 'triple/3' @ $int @ $int @ $int @ V_a @ V_b @ V_t2 ) @ V_G ) )
=> ( V_t1 = V_t2 ) ) ) ) )
=> ? [V_a_dot_1: $int,V_b_dot_1: $int,V_c: $int,V_t_dot_1: $int] :
( ( 'member/2' @ ( 'Triple' @ $int @ $int @ $int ) @ ( 'triple/3' @ $int @ $int @ $int @ V_a_dot_1 @ V_b_dot_1 @ V_t_dot_1 ) @ V_G )
& ( 'member/2' @ ( 'Triple' @ $int @ $int @ $int ) @ ( 'triple/3' @ $int @ $int @ $int @ V_b_dot_1 @ V_c @ V_t_dot_1 ) @ V_G )
& ( 'member/2' @ ( 'Triple' @ $int @ $int @ $int ) @ ( 'triple/3' @ $int @ $int @ $int @ V_c @ V_a_dot_1 @ V_t_dot_1 ) @ V_G ) ) ) ).
%------------------------------------------------------------------------------