TPTP Problem File: MSC014-10.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : MSC014-10 : TPTP v9.0.0. Released v7.5.0.
% Domain : Puzzles
% Problem : Find a model with a functional relation which is injective, n=4
% Version : Especial.
% English :
% Refs : [CS18] Claessen & Smallbone (2018), Efficient Encodings of Fi
% : [Sma18] Smallbone (2018), Email to Geoff Sutcliffe
% Source : [Sma18]
% Names :
% Status : Satisfiable
% Rating : 0.29 v9.0.0, 0.33 v8.2.0, 0.40 v8.1.0, 0.25 v7.5.0
% Syntax : Number of clauses : 12 ( 12 unt; 0 nHn; 5 RR)
% Number of literals : 12 ( 12 equ; 1 neg)
% Maximal clause size : 1 ( 1 avg)
% Maximal term depth : 7 ( 1 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 10 ( 10 usr; 5 con; 0-5 aty)
% Number of variables : 46 ( 26 sgn)
% SPC : CNF_SAT_RFO_PEQ_UEQ
% Comments : Converted from MSC014+1 to UEQ using [CS18].
%------------------------------------------------------------------------------
cnf(ifeq_axiom,axiom,
ifeq2(A,A,B,C) = B ).
cnf(ifeq_axiom_001,axiom,
ifeq(A,A,B,C) = B ).
cnf(n0_and_n1_reflexive_1,axiom,
equalish(n0,n0) = true ).
cnf(n0_and_n1_reflexive,axiom,
equalish(n1,n1) = true ).
cnf(exists_f,axiom,
ifeq2(equalish(X4,X4),true,ifeq2(equalish(X3,X3),true,ifeq2(equalish(X2,X2),true,ifeq2(equalish(X1,X1),true,f(X1,X2,X3,X4,sK1_exists_f_Z(X1,X2,X3,X4)),true),true),true),true) = true ).
cnf(inject_f_3,axiom,
ifeq2(f(Y1,Y2,Y3,Y4,Z),true,ifeq2(f(X1,X2,X3,X4,Z),true,equalish(X4,Y4),true),true) = true ).
cnf(inject_f_2,axiom,
ifeq2(f(Y1,Y2,Y3,Y4,Z),true,ifeq2(f(X1,X2,X3,X4,Z),true,equalish(X3,Y3),true),true) = true ).
cnf(inject_f_1,axiom,
ifeq2(f(Y1,Y2,Y3,Y4,Z),true,ifeq2(f(X1,X2,X3,X4,Z),true,equalish(X2,Y2),true),true) = true ).
cnf(inject_f,axiom,
ifeq2(f(Y1,Y2,Y3,Y4,Z),true,ifeq2(f(X1,X2,X3,X4,Z),true,equalish(X1,Y1),true),true) = true ).
cnf(n0_not_n1_1,axiom,
ifeq(equalish(n0,n1),true,a,b) = b ).
cnf(n0_not_n1,axiom,
ifeq(equalish(n1,n0),true,a,b) = b ).
cnf(goal,negated_conjecture,
a != b ).
%------------------------------------------------------------------------------