TPTP Problem File: MSC014+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : MSC014+1 : TPTP v9.0.0. Released v3.2.0.
% Domain : Miscellaneous
% Problem : Find a model with a functional relation which is injective, n=4
% Version : Especial.
% Refs : [Bez05] Bezem (2005), Email to Geoff Sutcliffe
% Source : [Bez05]
% Names : inj5 [Bez05]
% Status : Satisfiable
% Rating : 0.00 v7.1.0, 0.33 v6.4.0, 0.00 v6.2.0, 0.40 v6.1.0, 0.20 v6.0.0, 0.25 v5.5.0, 0.33 v5.4.0, 0.29 v5.2.0, 0.25 v5.0.0, 0.33 v4.1.0, 0.25 v4.0.1, 0.33 v3.7.0, 0.00 v3.5.0, 0.33 v3.4.0, 0.40 v3.3.0, 0.33 v3.2.0
% Syntax : Number of formulae : 4 ( 0 unt; 0 def)
% Number of atoms : 15 ( 0 equ)
% Maximal formula atoms : 6 ( 3 avg)
% Number of connectives : 13 ( 2 ~; 0 |; 9 &)
% ( 0 <=>; 2 =>; 0 <=; 0 <~>)
% Maximal formula depth : 14 ( 7 avg)
% Maximal term depth : 1 ( 1 avg)
% Number of predicates : 2 ( 2 usr; 0 prp; 2-5 aty)
% Number of functors : 2 ( 2 usr; 2 con; 0-0 aty)
% Number of variables : 14 ( 13 !; 1 ?)
% SPC : FOF_SAT_RFO_NEQ
% Comments :
%------------------------------------------------------------------------------
fof(n0_and_n1_reflexive,axiom,
( equalish(n0,n0)
& equalish(n1,n1) ) ).
fof(n0_not_n1,axiom,
( ~ equalish(n0,n1)
& ~ equalish(n1,n0) ) ).
fof(exists_f,axiom,
! [X1,X2,X3,X4] :
( ( equalish(X1,X1)
& equalish(X2,X2)
& equalish(X3,X3)
& equalish(X4,X4) )
=> ? [Z] : f(X1,X2,X3,X4,Z) ) ).
fof(inject_f,axiom,
! [X1,X2,X3,X4,Y1,Y2,Y3,Y4,Z] :
( ( f(X1,X2,X3,X4,Z)
& f(Y1,Y2,Y3,Y4,Z) )
=> ( equalish(X1,Y1)
& equalish(X2,Y2)
& equalish(X3,Y3)
& equalish(X4,Y4) ) ) ).
%------------------------------------------------------------------------------