TPTP Problem File: MSC013-10.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : MSC013-10 : TPTP v9.0.0. Released v7.3.0.
% Domain : Puzzles
% Problem : Single-valued relation between 5-tuple and domain element
% Version : Especial.
% English :
% Refs : [CS18] Claessen & Smallbone (2018), Efficient Encodings of Fi
% : [Sma18] Smallbone (2018), Email to Geoff Sutcliffe
% Source : [Sma18]
% Names :
% Status : Satisfiable
% Rating : 0.43 v9.0.0, 0.44 v8.2.0, 0.80 v8.1.0, 0.50 v7.5.0, 0.75 v7.3.0
% Syntax : Number of clauses : 12 ( 12 unt; 0 nHn; 5 RR)
% Number of literals : 12 ( 12 equ; 1 neg)
% Maximal clause size : 1 ( 1 avg)
% Maximal term depth : 8 ( 1 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 8 ( 8 usr; 4 con; 0-6 aty)
% Number of variables : 63 ( 41 sgn)
% SPC : CNF_SAT_RFO_PEQ_UEQ
% Comments : Converted from MSC013+1 to UEQ using [CS18].
%------------------------------------------------------------------------------
cnf(ifeq_axiom,axiom,
ifeq(A,A,B,C) = B ).
cnf(n0_and_n1_reflexive_1,axiom,
equalish(n0,n0) = true ).
cnf(n0_and_n1_reflexive,axiom,
equalish(n1,n1) = true ).
cnf(n0_equal_n1,axiom,
ifeq(equalish(n0,n1),true,goal,true) = true ).
cnf(n1_equal_n0,axiom,
ifeq(equalish(n1,n0),true,goal,true) = true ).
cnf(relation_exists,axiom,
ifeq(equalish(E,E),true,ifeq(equalish(D,D),true,ifeq(equalish(C,C),true,ifeq(equalish(B,B),true,ifeq(equalish(A,A),true,f(A,B,C,D,E,sK1_relation_exists_F(A,B,C,D,E)),true),true),true),true),true) = true ).
cnf(relation_injective_4,axiom,
ifeq(f(F,G,H,I,J,K),true,ifeq(f(A,B,C,D,E,K),true,equalish(E,J),true),true) = true ).
cnf(relation_injective_3,axiom,
ifeq(f(F,G,H,I,J,K),true,ifeq(f(A,B,C,D,E,K),true,equalish(D,I),true),true) = true ).
cnf(relation_injective_2,axiom,
ifeq(f(F,G,H,I,J,K),true,ifeq(f(A,B,C,D,E,K),true,equalish(C,H),true),true) = true ).
cnf(relation_injective_1,axiom,
ifeq(f(F,G,H,I,J,K),true,ifeq(f(A,B,C,D,E,K),true,equalish(B,G),true),true) = true ).
cnf(relation_injective,axiom,
ifeq(f(F,G,H,I,J,K),true,ifeq(f(A,B,C,D,E,K),true,equalish(A,F),true),true) = true ).
cnf(goal_to_be_proved,negated_conjecture,
goal != true ).
%------------------------------------------------------------------------------