TPTP Problem File: MSC007-1.005.rm
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : MSC007-1.005 : TPTP v9.0.0. Bugfixed v2.1.0.
% Domain : Miscellaneous
% Problem : Cook pigeon-hole problem
% Version : [Pel86] axioms : Especial.
% Theorem formulation : Propositional.
% English : Suppose there are N holes and N+1 pigeons to put in the
% holes. Every pigeon is in a hole and no hole contains more
% than one pigeon. Prove that this is impossible. The size is
% the number of pigeons.
% Refs : [CR79] Cook & Reckhow (1979), The Relative Efficiency of Prop
% : [Pel86] Pelletier (1986), Seventy-five Problems for Testing Au
% Source : [Pel86]
% Names : Pelletier 72 (Size 4) [Pel86]
% : pigeon.in (Size 4) [OTTER]
% Status : Unsatisfiable
% Rating : 0.00 v2.0.0
% Syntax :
% Comments : For an N hole problem, the number of propositions is N^2 + N
% and the number of clauses is (N^3 + N^2)/2 + N+1. Thus the
% number of propositions increases quadratically and the number
% of clauses increases cubically.
% : tptp2X: -ftptp -s5 MSC007-1.g
% Bugfixes : v2.1.0 - Replaced by a new SOTA size.
%--------------------------------------------------------------------------