TPTP Problem File: MGT065-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : MGT065-1 : TPTP v9.0.0. Released v2.4.0.
% Domain : Management (Organisation Theory)
% Problem : Long-run hazard of mortality
% Version : [Han98] axioms.
% English : The long-run hazard of mortality for an endowed organization with
% either a fragile or a robust position in a drifting environment
% exceeds the hazard near founding.
% Refs : [Kam00] Kamps (2000), Email to G. Sutcliffe
% : [CH00] Carroll & Hannan (2000), The Demography of Corporation
% : [Han98] Hannan (1998), Rethinking Age Dependence in Organizati
% Source : [TPTP]
% Names :
% Status : Unsatisfiable
% Rating : 0.10 v9.0.0, 0.15 v8.2.0, 0.14 v8.1.0, 0.05 v7.5.0, 0.11 v7.4.0, 0.18 v7.3.0, 0.17 v7.1.0, 0.08 v7.0.0, 0.13 v6.4.0, 0.07 v6.3.0, 0.09 v6.2.0, 0.10 v6.1.0, 0.29 v6.0.0, 0.20 v5.5.0, 0.35 v5.3.0, 0.22 v5.2.0, 0.25 v5.1.0, 0.24 v5.0.0, 0.14 v4.1.0, 0.15 v4.0.1, 0.09 v4.0.0, 0.00 v3.4.0, 0.08 v3.3.0, 0.21 v3.2.0, 0.31 v3.1.0, 0.45 v2.7.0, 0.25 v2.6.0, 0.22 v2.5.0, 0.33 v2.4.0
% Syntax : Number of clauses : 52 ( 17 unt; 17 nHn; 46 RR)
% Number of literals : 129 ( 15 equ; 57 neg)
% Maximal clause size : 5 ( 2 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 13 ( 12 usr; 0 prp; 1-3 aty)
% Number of functors : 16 ( 16 usr; 13 con; 0-2 aty)
% Number of variables : 71 ( 4 sgn)
% SPC : CNF_UNS_RFO_SEQ_NHN
% Comments : See MGT042+1.p for the mnemonic names.
% : Created with tptp2X -f tptp -t clausify:otter MGT065+1.p
%--------------------------------------------------------------------------
include('Axioms/MGT001-0.ax').
%--------------------------------------------------------------------------
cnf(definition_1_40,axiom,
( ~ has_endowment(A)
| organization(A) ) ).
cnf(definition_1_41,axiom,
( ~ has_endowment(A)
| ~ smaller_or_equal(age(A,B),eta)
| has_immunity(A,B) ) ).
cnf(definition_1_42,axiom,
( ~ has_endowment(A)
| ~ greater(age(A,B),eta)
| ~ has_immunity(A,B) ) ).
cnf(definition_1_43,axiom,
( ~ organization(A)
| smaller_or_equal(age(A,sk1(A)),eta)
| greater(age(A,sk1(A)),eta)
| has_endowment(A) ) ).
cnf(definition_1_44,axiom,
( ~ organization(A)
| smaller_or_equal(age(A,sk1(A)),eta)
| has_immunity(A,sk1(A))
| has_endowment(A) ) ).
cnf(definition_1_45,axiom,
( ~ organization(A)
| ~ has_immunity(A,sk1(A))
| greater(age(A,sk1(A)),eta)
| has_endowment(A) ) ).
cnf(definition_1_46,axiom,
( ~ organization(A)
| ~ has_immunity(A,sk1(A))
| has_immunity(A,sk1(A))
| has_endowment(A) ) ).
cnf(definition_2_47,axiom,
( ~ dissimilar(A,B,C)
| organization(A) ) ).
cnf(definition_2_48,axiom,
( ~ dissimilar(A,B,C)
| is_aligned(A,B)
| is_aligned(A,C) ) ).
cnf(definition_2_49,axiom,
( ~ dissimilar(A,B,C)
| ~ is_aligned(A,B)
| ~ is_aligned(A,C) ) ).
cnf(definition_2_50,axiom,
( ~ organization(A)
| ~ is_aligned(A,B)
| is_aligned(A,B)
| dissimilar(A,B,C) ) ).
cnf(definition_2_51,axiom,
( ~ organization(A)
| ~ is_aligned(A,B)
| is_aligned(A,C)
| dissimilar(A,B,C) ) ).
cnf(definition_2_52,axiom,
( ~ organization(A)
| ~ is_aligned(A,B)
| is_aligned(A,C)
| dissimilar(A,C,B) ) ).
cnf(definition_2_53,axiom,
( ~ organization(A)
| ~ is_aligned(A,B)
| is_aligned(A,B)
| dissimilar(A,C,B) ) ).
cnf(assumption_13_54,axiom,
( ~ organization(A)
| age(A,B) != zero
| is_aligned(A,B) ) ).
cnf(assumption_15_55,axiom,
( ~ organization(A)
| age(A,B) != zero
| ~ greater(age(A,C),sigma)
| dissimilar(A,B,C) ) ).
cnf(assumption_15_56,axiom,
( ~ organization(A)
| age(A,B) != zero
| ~ dissimilar(A,B,C)
| greater(age(A,C),sigma) ) ).
cnf(assumption_17_57,axiom,
( ~ organization(A)
| ~ has_immunity(A,B)
| hazard_of_mortality(A,B) = very_low ) ).
cnf(assumption_17_58,axiom,
( ~ organization(A)
| has_immunity(A,B)
| ~ is_aligned(A,B)
| ~ positional_advantage(A,B)
| hazard_of_mortality(A,B) = low ) ).
cnf(assumption_17_59,axiom,
( ~ organization(A)
| has_immunity(A,B)
| is_aligned(A,B)
| ~ positional_advantage(A,B)
| hazard_of_mortality(A,B) = mod1 ) ).
cnf(assumption_17_60,axiom,
( ~ organization(A)
| has_immunity(A,B)
| ~ is_aligned(A,B)
| positional_advantage(A,B)
| hazard_of_mortality(A,B) = mod2 ) ).
cnf(assumption_17_61,axiom,
( ~ organization(A)
| has_immunity(A,B)
| is_aligned(A,B)
| positional_advantage(A,B)
| hazard_of_mortality(A,B) = high ) ).
cnf(assumption_18a_62,axiom,
greater(high,mod1) ).
cnf(assumption_18b_63,axiom,
greater(mod1,low) ).
cnf(assumption_18c_64,axiom,
greater(low,very_low) ).
cnf(assumption_18d_65,axiom,
greater(high,mod2) ).
cnf(assumption_18e_66,axiom,
greater(mod2,low) ).
cnf(theorem_11_67,negated_conjecture,
organization(sk2) ).
cnf(theorem_11_68,negated_conjecture,
( robust_position(sk2)
| fragile_position(sk2) ) ).
cnf(theorem_11_69,negated_conjecture,
has_endowment(sk2) ).
cnf(theorem_11_70,negated_conjecture,
age(sk2,sk3) = zero ).
cnf(theorem_11_71,negated_conjecture,
greater(sigma,zero) ).
cnf(theorem_11_72,negated_conjecture,
greater(tau,zero) ).
cnf(theorem_11_73,negated_conjecture,
greater(eta,zero) ).
cnf(theorem_11_74,negated_conjecture,
smaller_or_equal(age(sk2,sk4),sigma) ).
cnf(theorem_11_75,negated_conjecture,
smaller_or_equal(age(sk2,sk4),tau) ).
cnf(theorem_11_76,negated_conjecture,
smaller_or_equal(age(sk2,sk4),eta) ).
cnf(theorem_11_77,negated_conjecture,
greater(age(sk2,sk5),sigma) ).
cnf(theorem_11_78,negated_conjecture,
greater(age(sk2,sk5),tau) ).
cnf(theorem_11_79,negated_conjecture,
greater(age(sk2,sk5),eta) ).
cnf(theorem_11_80,negated_conjecture,
( ~ greater(hazard_of_mortality(sk2,sk5),hazard_of_mortality(sk2,sk4))
| hazard_of_mortality(sk2,sk4) != hazard_of_mortality(sk2,sk3) ) ).
%--------------------------------------------------------------------------