TPTP Problem File: MGT063-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : MGT063-1 : TPTP v9.0.0. Released v2.4.0.
% Domain : Management (Organisation Theory)
% Problem : Conditions for increasing then decreasing hazard of mortality
% Version : [Han98] axioms.
% English : If environmental drift destroys alignment before advantage can
% be gained from occupancy of a robust position, then the hazard
% of mortality for an unendowed organization with a robust
% position initially increases with age, then decreases with
% further aging and falls below the initial level.
% Refs : [Kam00] Kamps (2000), Email to G. Sutcliffe
% : [CH00] Carroll & Hannan (2000), The Demography of Corporation
% : [Han98] Hannan (1998), Rethinking Age Dependence in Organizati
% Source : [TPTP]
% Names :
% Status : Unsatisfiable
% Rating : 0.25 v9.0.0, 0.30 v8.2.0, 0.24 v8.1.0, 0.26 v7.4.0, 0.35 v7.3.0, 0.33 v7.1.0, 0.25 v7.0.0, 0.33 v6.4.0, 0.27 v6.2.0, 0.30 v6.1.0, 0.50 v5.5.0, 0.60 v5.3.0, 0.50 v5.1.0, 0.53 v5.0.0, 0.43 v4.1.0, 0.38 v4.0.1, 0.27 v4.0.0, 0.18 v3.7.0, 0.20 v3.5.0, 0.18 v3.4.0, 0.17 v3.3.0, 0.36 v3.2.0, 0.46 v3.1.0, 0.55 v2.7.0, 0.67 v2.6.0, 0.78 v2.5.0, 0.89 v2.4.0
% Syntax : Number of clauses : 58 ( 17 unt; 20 nHn; 50 RR)
% Number of literals : 149 ( 15 equ; 68 neg)
% Maximal clause size : 5 ( 2 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 12 ( 11 usr; 0 prp; 1-3 aty)
% Number of functors : 18 ( 18 usr; 14 con; 0-2 aty)
% Number of variables : 81 ( 5 sgn)
% SPC : CNF_UNS_RFO_SEQ_NHN
% Comments : See MGT042+1.p for the mnemonic names.
% : Created with tptp2X -f tptp -t clausify:otter MGT063+1.p
%--------------------------------------------------------------------------
include('Axioms/MGT001-0.ax').
%--------------------------------------------------------------------------
cnf(definition_1_39,axiom,
( ~ has_endowment(A)
| organization(A) ) ).
cnf(definition_1_40,axiom,
( ~ has_endowment(A)
| ~ smaller_or_equal(age(A,B),eta)
| has_immunity(A,B) ) ).
cnf(definition_1_41,axiom,
( ~ has_endowment(A)
| ~ greater(age(A,B),eta)
| ~ has_immunity(A,B) ) ).
cnf(definition_1_42,axiom,
( ~ organization(A)
| smaller_or_equal(age(A,sk1(A)),eta)
| greater(age(A,sk1(A)),eta)
| has_endowment(A) ) ).
cnf(definition_1_43,axiom,
( ~ organization(A)
| smaller_or_equal(age(A,sk1(A)),eta)
| has_immunity(A,sk1(A))
| has_endowment(A) ) ).
cnf(definition_1_44,axiom,
( ~ organization(A)
| ~ has_immunity(A,sk1(A))
| greater(age(A,sk1(A)),eta)
| has_endowment(A) ) ).
cnf(definition_1_45,axiom,
( ~ organization(A)
| ~ has_immunity(A,sk1(A))
| has_immunity(A,sk1(A))
| has_endowment(A) ) ).
cnf(assumption_1_46,axiom,
( ~ organization(A)
| has_endowment(A)
| ~ has_immunity(A,B) ) ).
cnf(definition_2_47,axiom,
( ~ dissimilar(A,B,C)
| organization(A) ) ).
cnf(definition_2_48,axiom,
( ~ dissimilar(A,B,C)
| is_aligned(A,B)
| is_aligned(A,C) ) ).
cnf(definition_2_49,axiom,
( ~ dissimilar(A,B,C)
| ~ is_aligned(A,B)
| ~ is_aligned(A,C) ) ).
cnf(definition_2_50,axiom,
( ~ organization(A)
| ~ is_aligned(A,B)
| is_aligned(A,B)
| dissimilar(A,B,C) ) ).
cnf(definition_2_51,axiom,
( ~ organization(A)
| ~ is_aligned(A,B)
| is_aligned(A,C)
| dissimilar(A,B,C) ) ).
cnf(definition_2_52,axiom,
( ~ organization(A)
| ~ is_aligned(A,B)
| is_aligned(A,C)
| dissimilar(A,C,B) ) ).
cnf(definition_2_53,axiom,
( ~ organization(A)
| ~ is_aligned(A,B)
| is_aligned(A,B)
| dissimilar(A,C,B) ) ).
cnf(assumption_13_54,axiom,
( ~ organization(A)
| age(A,B) != zero
| is_aligned(A,B) ) ).
cnf(assumption_15_55,axiom,
( ~ organization(A)
| age(A,B) != zero
| ~ greater(age(A,C),sigma)
| dissimilar(A,B,C) ) ).
cnf(assumption_15_56,axiom,
( ~ organization(A)
| age(A,B) != zero
| ~ dissimilar(A,B,C)
| greater(age(A,C),sigma) ) ).
cnf(definition_4_57,axiom,
( ~ robust_position(A)
| ~ smaller_or_equal(age(A,B),tau)
| ~ positional_advantage(A,B) ) ).
cnf(definition_4_58,axiom,
( ~ robust_position(A)
| ~ greater(age(A,B),tau)
| positional_advantage(A,B) ) ).
cnf(definition_4_59,axiom,
( smaller_or_equal(age(A,sk2(A)),tau)
| greater(age(A,sk2(A)),tau)
| robust_position(A) ) ).
cnf(definition_4_60,axiom,
( smaller_or_equal(age(A,sk2(A)),tau)
| ~ positional_advantage(A,sk2(A))
| robust_position(A) ) ).
cnf(definition_4_61,axiom,
( positional_advantage(A,sk2(A))
| greater(age(A,sk2(A)),tau)
| robust_position(A) ) ).
cnf(definition_4_62,axiom,
( positional_advantage(A,sk2(A))
| ~ positional_advantage(A,sk2(A))
| robust_position(A) ) ).
cnf(assumption_17_63,axiom,
( ~ organization(A)
| ~ has_immunity(A,B)
| hazard_of_mortality(A,B) = very_low ) ).
cnf(assumption_17_64,axiom,
( ~ organization(A)
| has_immunity(A,B)
| ~ is_aligned(A,B)
| ~ positional_advantage(A,B)
| hazard_of_mortality(A,B) = low ) ).
cnf(assumption_17_65,axiom,
( ~ organization(A)
| has_immunity(A,B)
| is_aligned(A,B)
| ~ positional_advantage(A,B)
| hazard_of_mortality(A,B) = mod1 ) ).
cnf(assumption_17_66,axiom,
( ~ organization(A)
| has_immunity(A,B)
| ~ is_aligned(A,B)
| positional_advantage(A,B)
| hazard_of_mortality(A,B) = mod2 ) ).
cnf(assumption_17_67,axiom,
( ~ organization(A)
| has_immunity(A,B)
| is_aligned(A,B)
| positional_advantage(A,B)
| hazard_of_mortality(A,B) = high ) ).
cnf(assumption_18a_68,axiom,
greater(high,mod1) ).
cnf(assumption_18b_69,axiom,
greater(mod1,low) ).
cnf(assumption_18c_70,axiom,
greater(low,very_low) ).
cnf(assumption_18d_71,axiom,
greater(high,mod2) ).
cnf(assumption_18e_72,axiom,
greater(mod2,low) ).
cnf(assumption_19_73,axiom,
greater(mod2,mod1) ).
cnf(theorem_9_74,negated_conjecture,
organization(sk3) ).
cnf(theorem_9_75,negated_conjecture,
robust_position(sk3) ).
cnf(theorem_9_76,negated_conjecture,
~ has_endowment(sk3) ).
cnf(theorem_9_77,negated_conjecture,
age(sk3,sk4) = zero ).
cnf(theorem_9_78,negated_conjecture,
greater(sigma,zero) ).
cnf(theorem_9_79,negated_conjecture,
greater(tau,zero) ).
cnf(theorem_9_80,negated_conjecture,
smaller(sigma,tau) ).
cnf(theorem_9_81,negated_conjecture,
smaller_or_equal(age(sk3,sk5),sigma) ).
cnf(theorem_9_82,negated_conjecture,
greater(age(sk3,sk6),sigma) ).
cnf(theorem_9_83,negated_conjecture,
smaller_or_equal(age(sk3,sk6),tau) ).
cnf(theorem_9_84,negated_conjecture,
greater(age(sk3,sk7),tau) ).
cnf(theorem_9_85,negated_conjecture,
( ~ smaller(hazard_of_mortality(sk3,sk7),hazard_of_mortality(sk3,sk5))
| ~ smaller(hazard_of_mortality(sk3,sk5),hazard_of_mortality(sk3,sk6))
| hazard_of_mortality(sk3,sk5) != hazard_of_mortality(sk3,sk4) ) ).
%--------------------------------------------------------------------------