TPTP Problem File: MGT061-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : MGT061-1 : TPTP v9.0.0. Released v2.4.0.
% Domain : Management (Organisation Theory)
% Problem : Conditions for an in reasing hazard of mortality
% Version : [Han98] axioms.
% English : The hazard of mortality increases with age for an unendowed
% organization with a fragile position in drifting environments.
% Refs : [Kam00] Kamps (2000), Email to G. Sutcliffe
% : [CH00] Carroll & Hannan (2000), The Demography of Corporation
% : [Han98] Hannan (1998), Rethinking Age Dependence in Organizati
% Source : [TPTP]
% Names :
% Status : Unsatisfiable
% Rating : 0.05 v9.0.0, 0.10 v8.1.0, 0.00 v7.5.0, 0.05 v7.4.0, 0.06 v7.3.0, 0.08 v7.1.0, 0.00 v7.0.0, 0.07 v6.4.0, 0.00 v6.1.0, 0.14 v6.0.0, 0.00 v5.5.0, 0.30 v5.3.0, 0.28 v5.2.0, 0.19 v5.1.0, 0.18 v5.0.0, 0.07 v4.1.0, 0.15 v4.0.1, 0.18 v4.0.0, 0.09 v3.7.0, 0.00 v3.3.0, 0.07 v3.2.0, 0.15 v3.1.0, 0.09 v2.7.0, 0.17 v2.6.0, 0.22 v2.5.0, 0.33 v2.4.0
% Syntax : Number of clauses : 46 ( 12 unt; 16 nHn; 38 RR)
% Number of literals : 119 ( 15 equ; 55 neg)
% Maximal clause size : 5 ( 2 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 12 ( 11 usr; 0 prp; 1-3 aty)
% Number of functors : 14 ( 14 usr; 11 con; 0-2 aty)
% Number of variables : 72 ( 5 sgn)
% SPC : CNF_UNS_RFO_SEQ_NHN
% Comments : See MGT042+1.p for the mnemonic names.
% : Created with tptp2X -f tptp -t clausify:otter MGT061+1.p
%--------------------------------------------------------------------------
include('Axioms/MGT001-0.ax').
%--------------------------------------------------------------------------
cnf(assumption_1_39,axiom,
( ~ organization(A)
| has_endowment(A)
| ~ has_immunity(A,B) ) ).
cnf(definition_2_40,axiom,
( ~ dissimilar(A,B,C)
| organization(A) ) ).
cnf(definition_2_41,axiom,
( ~ dissimilar(A,B,C)
| is_aligned(A,B)
| is_aligned(A,C) ) ).
cnf(definition_2_42,axiom,
( ~ dissimilar(A,B,C)
| ~ is_aligned(A,B)
| ~ is_aligned(A,C) ) ).
cnf(definition_2_43,axiom,
( ~ organization(A)
| ~ is_aligned(A,B)
| is_aligned(A,B)
| dissimilar(A,B,C) ) ).
cnf(definition_2_44,axiom,
( ~ organization(A)
| ~ is_aligned(A,B)
| is_aligned(A,C)
| dissimilar(A,B,C) ) ).
cnf(definition_2_45,axiom,
( ~ organization(A)
| ~ is_aligned(A,B)
| is_aligned(A,C)
| dissimilar(A,C,B) ) ).
cnf(definition_2_46,axiom,
( ~ organization(A)
| ~ is_aligned(A,B)
| is_aligned(A,B)
| dissimilar(A,C,B) ) ).
cnf(assumption_13_47,axiom,
( ~ organization(A)
| age(A,B) != zero
| is_aligned(A,B) ) ).
cnf(assumption_15_48,axiom,
( ~ organization(A)
| age(A,B) != zero
| ~ greater(age(A,C),sigma)
| dissimilar(A,B,C) ) ).
cnf(assumption_15_49,axiom,
( ~ organization(A)
| age(A,B) != zero
| ~ dissimilar(A,B,C)
| greater(age(A,C),sigma) ) ).
cnf(definition_3_50,axiom,
( ~ fragile_position(A)
| ~ smaller_or_equal(age(A,B),sigma)
| positional_advantage(A,B) ) ).
cnf(definition_3_51,axiom,
( ~ fragile_position(A)
| ~ greater(age(A,B),sigma)
| ~ positional_advantage(A,B) ) ).
cnf(definition_3_52,axiom,
( smaller_or_equal(age(A,sk1(A)),sigma)
| greater(age(A,sk1(A)),sigma)
| fragile_position(A) ) ).
cnf(definition_3_53,axiom,
( smaller_or_equal(age(A,sk1(A)),sigma)
| positional_advantage(A,sk1(A))
| fragile_position(A) ) ).
cnf(definition_3_54,axiom,
( ~ positional_advantage(A,sk1(A))
| greater(age(A,sk1(A)),sigma)
| fragile_position(A) ) ).
cnf(definition_3_55,axiom,
( ~ positional_advantage(A,sk1(A))
| positional_advantage(A,sk1(A))
| fragile_position(A) ) ).
cnf(assumption_17_56,axiom,
( ~ organization(A)
| ~ has_immunity(A,B)
| hazard_of_mortality(A,B) = very_low ) ).
cnf(assumption_17_57,axiom,
( ~ organization(A)
| has_immunity(A,B)
| ~ is_aligned(A,B)
| ~ positional_advantage(A,B)
| hazard_of_mortality(A,B) = low ) ).
cnf(assumption_17_58,axiom,
( ~ organization(A)
| has_immunity(A,B)
| is_aligned(A,B)
| ~ positional_advantage(A,B)
| hazard_of_mortality(A,B) = mod1 ) ).
cnf(assumption_17_59,axiom,
( ~ organization(A)
| has_immunity(A,B)
| ~ is_aligned(A,B)
| positional_advantage(A,B)
| hazard_of_mortality(A,B) = mod2 ) ).
cnf(assumption_17_60,axiom,
( ~ organization(A)
| has_immunity(A,B)
| is_aligned(A,B)
| positional_advantage(A,B)
| hazard_of_mortality(A,B) = high ) ).
cnf(assumption_18a_61,axiom,
greater(high,mod1) ).
cnf(assumption_18b_62,axiom,
greater(mod1,low) ).
cnf(assumption_18c_63,axiom,
greater(low,very_low) ).
cnf(assumption_18d_64,axiom,
greater(high,mod2) ).
cnf(assumption_18e_65,axiom,
greater(mod2,low) ).
cnf(theorem_7_66,negated_conjecture,
organization(sk2) ).
cnf(theorem_7_67,negated_conjecture,
fragile_position(sk2) ).
cnf(theorem_7_68,negated_conjecture,
~ has_endowment(sk2) ).
cnf(theorem_7_69,negated_conjecture,
age(sk2,sk3) = zero ).
cnf(theorem_7_70,negated_conjecture,
greater(sigma,zero) ).
cnf(theorem_7_71,negated_conjecture,
smaller_or_equal(age(sk2,sk4),sigma) ).
cnf(theorem_7_72,negated_conjecture,
greater(age(sk2,sk5),sigma) ).
cnf(theorem_7_73,negated_conjecture,
( ~ greater(hazard_of_mortality(sk2,sk5),hazard_of_mortality(sk2,sk4))
| hazard_of_mortality(sk2,sk4) != hazard_of_mortality(sk2,sk3) ) ).
%--------------------------------------------------------------------------