TPTP Problem File: MGT060-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : MGT060-1 : TPTP v9.0.0. Released v2.4.0.
% Domain : Management (Organisation Theory)
% Problem : Hazard of mortality is lower during periods of immunity
% Version : [Han98] axioms.
% English : An organization's hazard of mortality is lower during periods in
% which it has immunity than in periods in which it does not.
% Refs : [Kam00] Kamps (2000), Email to G. Sutcliffe
% : [CH00] Carroll & Hannan (2000), The Demography of Corporation
% : [Han98] Hannan (1998), Rethinking Age Dependence in Organizati
% Source : [TPTP]
% Names :
% Status : Unsatisfiable
% Rating : 0.10 v9.0.0, 0.15 v8.2.0, 0.14 v8.1.0, 0.05 v7.5.0, 0.11 v7.4.0, 0.18 v7.3.0, 0.17 v7.1.0, 0.08 v7.0.0, 0.13 v6.4.0, 0.07 v6.3.0, 0.09 v6.2.0, 0.00 v6.1.0, 0.14 v6.0.0, 0.10 v5.5.0, 0.15 v5.4.0, 0.20 v5.3.0, 0.17 v5.2.0, 0.19 v5.1.0, 0.18 v5.0.0, 0.14 v4.1.0, 0.15 v4.0.1, 0.09 v3.7.0, 0.10 v3.5.0, 0.09 v3.4.0, 0.08 v3.3.0, 0.21 v3.2.0, 0.15 v3.1.0, 0.27 v2.7.0, 0.17 v2.6.0, 0.22 v2.5.0, 0.44 v2.4.0
% Syntax : Number of clauses : 25 ( 9 unt; 7 nHn; 23 RR)
% Number of literals : 58 ( 10 equ; 24 neg)
% Maximal clause size : 5 ( 2 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 9 ( 8 usr; 0 prp; 1-2 aty)
% Number of functors : 9 ( 9 usr; 8 con; 0-2 aty)
% Number of variables : 33 ( 0 sgn)
% SPC : CNF_UNS_RFO_SEQ_NHN
% Comments : See MGT042+1.p for the mnemonic names.
% : Created with tptp2X -f tptp -t clausify:otter MGT060+1.p
%--------------------------------------------------------------------------
include('Axioms/MGT001-0.ax').
%--------------------------------------------------------------------------
cnf(assumption_17_32,axiom,
( ~ organization(A)
| ~ has_immunity(A,B)
| hazard_of_mortality(A,B) = very_low ) ).
cnf(assumption_17_33,axiom,
( ~ organization(A)
| has_immunity(A,B)
| ~ is_aligned(A,B)
| ~ positional_advantage(A,B)
| hazard_of_mortality(A,B) = low ) ).
cnf(assumption_17_34,axiom,
( ~ organization(A)
| has_immunity(A,B)
| is_aligned(A,B)
| ~ positional_advantage(A,B)
| hazard_of_mortality(A,B) = mod1 ) ).
cnf(assumption_17_35,axiom,
( ~ organization(A)
| has_immunity(A,B)
| ~ is_aligned(A,B)
| positional_advantage(A,B)
| hazard_of_mortality(A,B) = mod2 ) ).
cnf(assumption_17_36,axiom,
( ~ organization(A)
| has_immunity(A,B)
| is_aligned(A,B)
| positional_advantage(A,B)
| hazard_of_mortality(A,B) = high ) ).
cnf(assumption_18a_37,axiom,
greater(high,mod1) ).
cnf(assumption_18b_38,axiom,
greater(mod1,low) ).
cnf(assumption_18c_39,axiom,
greater(low,very_low) ).
cnf(assumption_18d_40,axiom,
greater(high,mod2) ).
cnf(assumption_18e_41,axiom,
greater(mod2,low) ).
cnf(assumption_3_42,negated_conjecture,
organization(sk1) ).
cnf(assumption_3_43,negated_conjecture,
has_immunity(sk1,sk2) ).
cnf(assumption_3_44,negated_conjecture,
~ has_immunity(sk1,sk3) ).
cnf(assumption_3_45,negated_conjecture,
~ greater(hazard_of_mortality(sk1,sk3),hazard_of_mortality(sk1,sk2)) ).
%--------------------------------------------------------------------------