TPTP Problem File: MGT060+1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : MGT060+1 : TPTP v9.0.0. Released v2.4.0.
% Domain : Management (Organisation Theory)
% Problem : Hazard of mortality is lower during periods of immunity
% Version : [Han98] axioms.
% English : An organization's hazard of mortality is lower during periods in
% which it has immunity than in periods in which it does not.
% Refs : [Kam00] Kamps (2000), Email to G. Sutcliffe
% : [CH00] Carroll & Hannan (2000), The Demography of Corporation
% : [Han98] Hannan (1998), Rethinking Age Dependence in Organizati
% Source : [Kam00]
% Names : ASSUMPTION 3 [Han98]
% Status : Theorem
% Rating : 0.18 v9.0.0, 0.19 v8.2.0, 0.17 v8.1.0, 0.14 v7.5.0, 0.16 v7.4.0, 0.17 v7.3.0, 0.14 v7.2.0, 0.10 v7.1.0, 0.17 v7.0.0, 0.13 v6.4.0, 0.19 v6.3.0, 0.21 v6.2.0, 0.24 v6.1.0, 0.27 v6.0.0, 0.22 v5.5.0, 0.19 v5.4.0, 0.25 v5.3.0, 0.30 v5.2.0, 0.25 v5.1.0, 0.24 v5.0.0, 0.25 v4.1.0, 0.26 v4.0.0, 0.25 v3.5.0, 0.21 v3.2.0, 0.18 v3.1.0, 0.33 v2.4.0
% Syntax : Number of formulae : 13 ( 5 unt; 0 def)
% Number of atoms : 41 ( 8 equ)
% Maximal formula atoms : 16 ( 3 avg)
% Number of connectives : 35 ( 7 ~; 4 |; 12 &)
% ( 3 <=>; 9 =>; 0 <=; 0 <~>)
% Maximal formula depth : 12 ( 4 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 9 ( 8 usr; 0 prp; 1-2 aty)
% Number of functors : 6 ( 6 usr; 5 con; 0-2 aty)
% Number of variables : 18 ( 18 !; 0 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments : See MGT042+1.p for the mnemonic names.
%--------------------------------------------------------------------------
include('Axioms/MGT001+0.ax').
%--------------------------------------------------------------------------
%----Problem Axioms
%----An organization's immunity. alignment of capability with the
%----current state of the environment and positional advantage jointly
%----affect the hazard of mortality with the following ordinal scaling:
fof(assumption_17,axiom,
! [X,T] :
( organization(X)
=> ( ( has_immunity(X,T)
=> hazard_of_mortality(X,T) = very_low )
& ( ~ has_immunity(X,T)
=> ( ( ( is_aligned(X,T)
& positional_advantage(X,T) )
=> hazard_of_mortality(X,T) = low )
& ( ( ~ is_aligned(X,T)
& positional_advantage(X,T) )
=> hazard_of_mortality(X,T) = mod1 )
& ( ( is_aligned(X,T)
& ~ positional_advantage(X,T) )
=> hazard_of_mortality(X,T) = mod2 )
& ( ( ~ is_aligned(X,T)
& ~ positional_advantage(X,T) )
=> hazard_of_mortality(X,T) = high ) ) ) ) ) ).
%----The levels of hazard of mortality are ordered:
%----
%----Split over 5 separate formulas because TPTP gives an error on top
%----level occurrences of `&'.
fof(assumption_18a,axiom,
greater(high,mod1) ).
fof(assumption_18b,axiom,
greater(mod1,low) ).
fof(assumption_18c,axiom,
greater(low,very_low) ).
fof(assumption_18d,axiom,
greater(high,mod2) ).
fof(assumption_18e,axiom,
greater(mod2,low) ).
%----Problem theorems
%----Text says on p.152 ``These assumptions [A17,A18] have the same effect
%---- as assumptions 2 and 3 in the formalization used in section III.''
%----This is indeed the case for these assumptions are now derivable.
%----A3 from A17, A18a,b,c,e (also needs D<, MP>str, MP>com, MP>tra).
%----
%----An organization's hazard of mortality is lower during periods in
%----which it has immunity than in periods in which it does not.
fof(assumption_3,conjecture,
! [X,T0,T] :
( ( organization(X)
& has_immunity(X,T0)
& ~ has_immunity(X,T) )
=> greater(hazard_of_mortality(X,T),hazard_of_mortality(X,T0)) ) ).
%--------------------------------------------------------------------------