TPTP Problem File: MGT059+1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : MGT059+1 : TPTP v9.0.0. Released v2.4.0.
% Domain : Management (Organisation Theory)
% Problem : Hazard of mortality is constant during periods of immunity
% Version : [Han98] axioms.
% English : An organization's hazard of mortality is constant during periods
% in which it has immunity.
% Refs : [Kam00] Kamps (2000), Email to G. Sutcliffe
% : [CH00] Carroll & Hannan (2000), The Demography of Corporation
% : [Han98] Hannan (1998), Rethinking Age Dependence in Organizati
% Source : [Kam00]
% Names : ASSUMPTION 2 [Han98]
% Status : Theorem
% Rating : 0.03 v9.0.0, 0.06 v8.1.0, 0.03 v7.1.0, 0.04 v7.0.0, 0.03 v6.4.0, 0.08 v6.3.0, 0.04 v6.2.0, 0.08 v6.1.0, 0.13 v6.0.0, 0.09 v5.5.0, 0.07 v5.4.0, 0.04 v5.3.0, 0.11 v5.2.0, 0.05 v5.0.0, 0.04 v3.7.0, 0.00 v2.4.0
% Syntax : Number of formulae : 8 ( 0 unt; 0 def)
% Number of atoms : 36 ( 9 equ)
% Maximal formula atoms : 16 ( 4 avg)
% Number of connectives : 34 ( 6 ~; 4 |; 12 &)
% ( 3 <=>; 9 =>; 0 <=; 0 <~>)
% Maximal formula depth : 12 ( 6 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 9 ( 8 usr; 0 prp; 1-2 aty)
% Number of functors : 6 ( 6 usr; 5 con; 0-2 aty)
% Number of variables : 18 ( 18 !; 0 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments : See MGT042+1.p for the mnemonic names.
%--------------------------------------------------------------------------
include('Axioms/MGT001+0.ax').
%--------------------------------------------------------------------------
%----Problem Axioms
%----An organization's immunity. alignment of capability with the
%----current state of the environment and positional advantage jointly
%----affect the hazard of mortality with the following ordinal scaling:
fof(assumption_17,axiom,
! [X,T] :
( organization(X)
=> ( ( has_immunity(X,T)
=> hazard_of_mortality(X,T) = very_low )
& ( ~ has_immunity(X,T)
=> ( ( ( is_aligned(X,T)
& positional_advantage(X,T) )
=> hazard_of_mortality(X,T) = low )
& ( ( ~ is_aligned(X,T)
& positional_advantage(X,T) )
=> hazard_of_mortality(X,T) = mod1 )
& ( ( is_aligned(X,T)
& ~ positional_advantage(X,T) )
=> hazard_of_mortality(X,T) = mod2 )
& ( ( ~ is_aligned(X,T)
& ~ positional_advantage(X,T) )
=> hazard_of_mortality(X,T) = high ) ) ) ) ) ).
%----Problem theorems
%----Text says on p.152 ``These assumptions [A17,A18] have the same effect
%---- as assumptions 2 and 3 in the formalization used in section III.''
%----This is indeed the case for these assumptions are now derivable.
%----A2 from A17 (no inequalities needed).
%----
%----An organization's hazard of mortality is constant during periods
%----in which it has immunity.
fof(assumption_2,conjecture,
! [X,T0,T] :
( ( organization(X)
& has_immunity(X,T0)
& has_immunity(X,T) )
=> hazard_of_mortality(X,T0) = hazard_of_mortality(X,T) ) ).
%--------------------------------------------------------------------------