TPTP Problem File: MGT058-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : MGT058-1 : TPTP v9.0.0. Released v2.4.0.
% Domain : Management (Organisation Theory)
% Problem : An organization's position cannot be both fragile and robust
% Version : [Han98] axioms.
% English :
% Refs : [Kam00] Kamps (2000), Email to G. Sutcliffe
% : [CH00] Carroll & Hannan (2000), The Demography of Corporation
% : [Han98] Hannan (1998), Rethinking Age Dependence in Organizati
% Source : [TPTP]
% Names :
% Status : Unsatisfiable
% Rating : 0.05 v9.0.0, 0.10 v8.1.0, 0.00 v7.5.0, 0.05 v7.4.0, 0.12 v7.3.0, 0.08 v7.1.0, 0.00 v7.0.0, 0.13 v6.4.0, 0.07 v6.3.0, 0.00 v6.2.0, 0.10 v6.1.0, 0.14 v6.0.0, 0.10 v5.5.0, 0.15 v5.3.0, 0.11 v5.2.0, 0.12 v5.0.0, 0.07 v4.1.0, 0.00 v4.0.1, 0.09 v4.0.0, 0.00 v3.4.0, 0.08 v3.3.0, 0.14 v3.2.0, 0.23 v3.1.0, 0.27 v2.7.0, 0.25 v2.6.0, 0.22 v2.5.0, 0.33 v2.4.0
% Syntax : Number of clauses : 29 ( 6 unt; 11 nHn; 24 RR)
% Number of literals : 68 ( 6 equ; 26 neg)
% Maximal clause size : 3 ( 2 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 9 ( 8 usr; 0 prp; 1-2 aty)
% Number of functors : 8 ( 8 usr; 5 con; 0-2 aty)
% Number of variables : 39 ( 0 sgn)
% SPC : CNF_UNS_RFO_SEQ_NHN
% Comments : See MGT042+1.p for the mnemonic names.
% : Created with tptp2X -f tptp -t clausify:otter MGT058+1.p
%--------------------------------------------------------------------------
include('Axioms/MGT001-0.ax').
%--------------------------------------------------------------------------
cnf(definition_3_30,axiom,
( ~ fragile_position(A)
| ~ smaller_or_equal(age(A,B),sigma)
| positional_advantage(A,B) ) ).
cnf(definition_3_31,axiom,
( ~ fragile_position(A)
| ~ greater(age(A,B),sigma)
| ~ positional_advantage(A,B) ) ).
cnf(definition_3_32,axiom,
( smaller_or_equal(age(A,sk1(A)),sigma)
| greater(age(A,sk1(A)),sigma)
| fragile_position(A) ) ).
cnf(definition_3_33,axiom,
( smaller_or_equal(age(A,sk1(A)),sigma)
| positional_advantage(A,sk1(A))
| fragile_position(A) ) ).
cnf(definition_3_34,axiom,
( ~ positional_advantage(A,sk1(A))
| greater(age(A,sk1(A)),sigma)
| fragile_position(A) ) ).
cnf(definition_3_35,axiom,
( ~ positional_advantage(A,sk1(A))
| positional_advantage(A,sk1(A))
| fragile_position(A) ) ).
cnf(definition_4_36,axiom,
( ~ robust_position(A)
| ~ smaller_or_equal(age(A,B),tau)
| ~ positional_advantage(A,B) ) ).
cnf(definition_4_37,axiom,
( ~ robust_position(A)
| ~ greater(age(A,B),tau)
| positional_advantage(A,B) ) ).
cnf(definition_4_38,axiom,
( smaller_or_equal(age(A,sk2(A)),tau)
| greater(age(A,sk2(A)),tau)
| robust_position(A) ) ).
cnf(definition_4_39,axiom,
( smaller_or_equal(age(A,sk2(A)),tau)
| ~ positional_advantage(A,sk2(A))
| robust_position(A) ) ).
cnf(definition_4_40,axiom,
( positional_advantage(A,sk2(A))
| greater(age(A,sk2(A)),tau)
| robust_position(A) ) ).
cnf(definition_4_41,axiom,
( positional_advantage(A,sk2(A))
| ~ positional_advantage(A,sk2(A))
| robust_position(A) ) ).
cnf(lemma_10_42,negated_conjecture,
organization(sk3) ).
cnf(lemma_10_43,negated_conjecture,
age(sk3,sk4) = zero ).
cnf(lemma_10_44,negated_conjecture,
greater_or_equal(sigma,zero) ).
cnf(lemma_10_45,negated_conjecture,
greater_or_equal(tau,zero) ).
cnf(lemma_10_46,negated_conjecture,
fragile_position(sk3) ).
cnf(lemma_10_47,negated_conjecture,
robust_position(sk3) ).
%--------------------------------------------------------------------------