TPTP Problem File: MGT057-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : MGT057-1 : TPTP v9.0.0. Released v2.4.0.
% Domain : Management (Organisation Theory)
% Problem : Conditions for a constant then increasing hazard of mortality
% Version : [Han98] axioms.
% English : In a drifting environment, an endowed organization's hazard of
% mortality is constant during the period of immunity; beyond the
% period of immunity, the hazard rises with age.
% Refs : [Kam00] Kamps (2000), Email to G. Sutcliffe
% : [CH00] Carroll & Hannan (2000), The Demography of Corporation
% : [Han98] Hannan (1998), Rethinking Age Dependence in Organizati
% Source : [TPTP]
% Names :
% Status : Unsatisfiable
% Rating : 0.05 v9.0.0, 0.10 v8.1.0, 0.00 v7.5.0, 0.05 v7.4.0, 0.06 v7.3.0, 0.08 v7.1.0, 0.00 v7.0.0, 0.07 v6.4.0, 0.00 v6.1.0, 0.07 v6.0.0, 0.00 v5.5.0, 0.10 v5.4.0, 0.15 v5.3.0, 0.11 v5.2.0, 0.06 v5.0.0, 0.00 v4.0.1, 0.09 v4.0.0, 0.00 v3.3.0, 0.07 v3.2.0, 0.08 v3.1.0, 0.09 v2.7.0, 0.08 v2.6.0, 0.00 v2.5.0, 0.11 v2.4.0
% Syntax : Number of clauses : 27 ( 6 unt; 8 nHn; 25 RR)
% Number of literals : 66 ( 8 equ; 31 neg)
% Maximal clause size : 4 ( 2 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 8 ( 7 usr; 0 prp; 1-2 aty)
% Number of functors : 9 ( 9 usr; 6 con; 0-2 aty)
% Number of variables : 38 ( 0 sgn)
% SPC : CNF_UNS_RFO_SEQ_NHN
% Comments : See MGT042+1.p for the mnemonic names.
% : Created with tptp2X -f tptp -t clausify:otter MGT057+1.p
%--------------------------------------------------------------------------
include('Axioms/MGT001-0.ax').
%--------------------------------------------------------------------------
cnf(definition_1_31,axiom,
( ~ has_endowment(A)
| organization(A) ) ).
cnf(definition_1_32,axiom,
( ~ has_endowment(A)
| ~ smaller_or_equal(age(A,B),eta)
| has_immunity(A,B) ) ).
cnf(definition_1_33,axiom,
( ~ has_endowment(A)
| ~ greater(age(A,B),eta)
| ~ has_immunity(A,B) ) ).
cnf(definition_1_34,axiom,
( ~ organization(A)
| smaller_or_equal(age(A,sk1(A)),eta)
| greater(age(A,sk1(A)),eta)
| has_endowment(A) ) ).
cnf(definition_1_35,axiom,
( ~ organization(A)
| smaller_or_equal(age(A,sk1(A)),eta)
| has_immunity(A,sk1(A))
| has_endowment(A) ) ).
cnf(definition_1_36,axiom,
( ~ organization(A)
| ~ has_immunity(A,sk1(A))
| greater(age(A,sk1(A)),eta)
| has_endowment(A) ) ).
cnf(definition_1_37,axiom,
( ~ organization(A)
| ~ has_immunity(A,sk1(A))
| has_immunity(A,sk1(A))
| has_endowment(A) ) ).
cnf(assumption_2_38,axiom,
( ~ organization(A)
| ~ has_immunity(A,B)
| ~ has_immunity(A,C)
| hazard_of_mortality(A,B) = hazard_of_mortality(A,C) ) ).
cnf(assumption_3_39,axiom,
( ~ organization(A)
| ~ has_immunity(A,B)
| has_immunity(A,C)
| greater(hazard_of_mortality(A,C),hazard_of_mortality(A,B)) ) ).
cnf(theorem_6_40,negated_conjecture,
organization(sk2) ).
cnf(theorem_6_41,negated_conjecture,
has_endowment(sk2) ).
cnf(theorem_6_42,negated_conjecture,
age(sk2,sk3) = zero ).
cnf(theorem_6_43,negated_conjecture,
smaller_or_equal(age(sk2,sk4),eta) ).
cnf(theorem_6_44,negated_conjecture,
greater(age(sk2,sk5),eta) ).
cnf(theorem_6_45,negated_conjecture,
greater(eta,zero) ).
cnf(theorem_6_46,negated_conjecture,
( ~ greater(hazard_of_mortality(sk2,sk5),hazard_of_mortality(sk2,sk4))
| hazard_of_mortality(sk2,sk4) != hazard_of_mortality(sk2,sk3) ) ).
%--------------------------------------------------------------------------