TPTP Problem File: MGT057+1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : MGT057+1 : TPTP v9.0.0. Released v2.4.0.
% Domain : Management (Organisation Theory)
% Problem : Conditions for a constant then increasing hazard of mortality
% Version : [Han98] axioms.
% English : In a drifting environment, an endowed organization's hazard of
% mortality is constant during the period of immunity; beyond the
% period of immunity, the hazard rises with age.
% Refs : [Kam00] Kamps (2000), Email to G. Sutcliffe
% : [CH00] Carroll & Hannan (2000), The Demography of Corporation
% : [Han98] Hannan (1998), Rethinking Age Dependence in Organizati
% Source : [Kam00]
% Names : THEOREM 6 [Han98]
% Status : Theorem
% Rating : 0.12 v9.0.0, 0.14 v8.2.0, 0.11 v8.1.0, 0.08 v7.5.0, 0.09 v7.4.0, 0.10 v7.2.0, 0.07 v7.1.0, 0.09 v7.0.0, 0.07 v6.4.0, 0.12 v6.2.0, 0.16 v6.1.0, 0.17 v6.0.0, 0.09 v5.5.0, 0.15 v5.4.0, 0.18 v5.3.0, 0.22 v5.2.0, 0.15 v5.1.0, 0.14 v5.0.0, 0.08 v4.1.0, 0.09 v4.0.1, 0.13 v4.0.0, 0.12 v3.7.0, 0.05 v3.4.0, 0.11 v3.3.0, 0.07 v3.2.0, 0.18 v3.1.0, 0.11 v2.7.0, 0.17 v2.6.0, 0.33 v2.5.0, 0.00 v2.4.0
% Syntax : Number of formulae : 10 ( 0 unt; 0 def)
% Number of atoms : 38 ( 6 equ)
% Maximal formula atoms : 8 ( 3 avg)
% Number of connectives : 31 ( 3 ~; 4 |; 14 &)
% ( 4 <=>; 6 =>; 0 <=; 0 <~>)
% Maximal formula depth : 11 ( 6 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 8 ( 7 usr; 0 prp; 1-2 aty)
% Number of functors : 4 ( 4 usr; 2 con; 0-2 aty)
% Number of variables : 25 ( 25 !; 0 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments : See MGT042+1.p for the mnemonic names.
%--------------------------------------------------------------------------
include('Axioms/MGT001+0.ax').
%--------------------------------------------------------------------------
%----Problem Axioms
%----An endowment provides an immunity that lasts until an
%----organization's age exceeds `eta'.
fof(definition_1,axiom,
! [X] :
( has_endowment(X)
<=> ! [T] :
( organization(X)
& ( smaller_or_equal(age(X,T),eta)
=> has_immunity(X,T) )
& ( greater(age(X,T),eta)
=> ~ has_immunity(X,T) ) ) ) ).
%----An organization's hazard of mortality is constant during periods
%----in which it has immunity.
fof(assumption_2,axiom,
! [X,T0,T] :
( ( organization(X)
& has_immunity(X,T0)
& has_immunity(X,T) )
=> hazard_of_mortality(X,T0) = hazard_of_mortality(X,T) ) ).
%----An organization's hazard of mortality is lower during periods in
%----which it has immunity than in periods in which it does not.
fof(assumption_3,axiom,
! [X,T0,T] :
( ( organization(X)
& has_immunity(X,T0)
& ~ has_immunity(X,T) )
=> greater(hazard_of_mortality(X,T),hazard_of_mortality(X,T0)) ) ).
%----Problem theorems
%----The obsolescence theorem for endowed organizations: In a drifting
%----environment, an endowed organization's hazard of mortality is
%----constant during the period of immunity; beyond the period of
%----immunity, the hazard rises with age.
%----From D1, A2, A3 (text says from L8,9; also needs D<, D<=).
%----
%----Text has redundant quantification over T3.
fof(theorem_6,conjecture,
! [X,T0,T1,T2] :
( ( organization(X)
& has_endowment(X)
& age(X,T0) = zero
& smaller_or_equal(age(X,T1),eta)
& greater(age(X,T2),eta)
& greater(eta,zero) )
=> ( greater(hazard_of_mortality(X,T2),hazard_of_mortality(X,T1))
& hazard_of_mortality(X,T1) = hazard_of_mortality(X,T0) ) ) ).
%--------------------------------------------------------------------------