TPTP Problem File: MGT056+1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : MGT056+1 : TPTP v9.0.0. Released v2.4.0.
% Domain : Management (Organisation Theory)
% Problem : Conditions for a constant then jumping hazard of mortality 2
% Version : [Han98] axioms.
% English : When (`eta' >= `sigma') in a drifting environment, an endowed
% organization's hazard of mortality remains constant until age
% `eta' and then jumps to a higher level in a drifting environment.
% Refs : [Kam00] Kamps (2000), Email to G. Sutcliffe
% : [CH00] Carroll & Hannan (2000), The Demography of Corporation
% : [Han98] Hannan (1998), Rethinking Age Dependence in Organizati
% Source : [Kam00]
% Names : LEMMA 9 [Han98]
% Status : Theorem
% Rating : 0.15 v9.0.0, 0.19 v8.2.0, 0.17 v8.1.0, 0.14 v7.5.0, 0.16 v7.4.0, 0.13 v7.3.0, 0.21 v7.2.0, 0.17 v7.1.0, 0.13 v7.0.0, 0.10 v6.4.0, 0.15 v6.3.0, 0.17 v6.2.0, 0.20 v6.0.0, 0.13 v5.5.0, 0.22 v5.4.0, 0.25 v5.3.0, 0.30 v5.2.0, 0.20 v5.1.0, 0.19 v5.0.0, 0.17 v4.0.1, 0.22 v4.0.0, 0.21 v3.7.0, 0.10 v3.5.0, 0.11 v3.3.0, 0.07 v3.2.0, 0.18 v3.1.0, 0.11 v2.7.0, 0.17 v2.6.0, 0.33 v2.5.0, 0.17 v2.4.0
% Syntax : Number of formulae : 10 ( 0 unt; 0 def)
% Number of atoms : 39 ( 6 equ)
% Maximal formula atoms : 9 ( 3 avg)
% Number of connectives : 32 ( 3 ~; 4 |; 15 &)
% ( 4 <=>; 6 =>; 0 <=; 0 <~>)
% Maximal formula depth : 12 ( 7 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 8 ( 7 usr; 0 prp; 1-2 aty)
% Number of functors : 5 ( 5 usr; 3 con; 0-2 aty)
% Number of variables : 25 ( 25 !; 0 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments : See MGT042+1.p for the mnemonic names.
%--------------------------------------------------------------------------
include('Axioms/MGT001+0.ax').
%--------------------------------------------------------------------------
%----Problem Axioms
%----An endowment provides an immunity that lasts until an
%----organization's age exceeds `eta'.
fof(definition_1,axiom,
! [X] :
( has_endowment(X)
<=> ! [T] :
( organization(X)
& ( smaller_or_equal(age(X,T),eta)
=> has_immunity(X,T) )
& ( greater(age(X,T),eta)
=> ~ has_immunity(X,T) ) ) ) ).
%----An organization's hazard of mortality is constant during periods
%----in which it has immunity.
fof(assumption_2,axiom,
! [X,T0,T] :
( ( organization(X)
& has_immunity(X,T0)
& has_immunity(X,T) )
=> hazard_of_mortality(X,T0) = hazard_of_mortality(X,T) ) ).
%----An organization's hazard of mortality is lower during periods in
%----which it has immunity than in periods in which it does not.
fof(assumption_3,axiom,
! [X,T0,T] :
( ( organization(X)
& has_immunity(X,T0)
& ~ has_immunity(X,T) )
=> greater(hazard_of_mortality(X,T),hazard_of_mortality(X,T0)) ) ).
%----Problem theorems
%----When (`eta' >= `sigma') in a drifting environment, an endowed
%----organization's hazard of mortality remains constant until age
%----`eta' and then jumps to a higher level in a drifting environment.
%----From D1, A2, A3 (text says D1-2, A1-3, 13-16; also needs D<, D<=, D>=,
%----MP>str, MP>com, MP>tra).
fof(lemma_9,conjecture,
! [X,T0,T1,T2] :
( ( organization(X)
& has_endowment(X)
& age(X,T0) = zero
& smaller_or_equal(age(X,T1),eta)
& greater(age(X,T2),eta)
& greater_or_equal(eta,sigma)
& greater(sigma,zero) )
=> ( greater(hazard_of_mortality(X,T2),hazard_of_mortality(X,T1))
& hazard_of_mortality(X,T1) = hazard_of_mortality(X,T0) ) ) ).
%--------------------------------------------------------------------------