TPTP Problem File: MGT055-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : MGT055-1 : TPTP v9.0.0. Released v2.4.0.
% Domain : Management (Organisation Theory)
% Problem : Conditions for a constant then jumping hazard of mortality 1
% Version : [Han98] axioms.
% English : When (`eta' < `sigma') in a drifting environment, an endowed
% organization's hazard of mortality remains constant until age
% reaches `eta', then jumps to a higher level, then jumps again at
% age `sigma'.
% Refs : [Kam00] Kamps (2000), Email to G. Sutcliffe
% : [CH00] Carroll & Hannan (2000), The Demography of Corporation
% : [Han98] Hannan (1998), Rethinking Age Dependence in Organizati
% Source : [TPTP]
% Names :
% Status : Unsatisfiable
% Rating : 0.10 v9.0.0, 0.15 v8.2.0, 0.10 v8.1.0, 0.05 v7.5.0, 0.11 v7.4.0, 0.18 v7.3.0, 0.08 v7.1.0, 0.00 v7.0.0, 0.13 v6.4.0, 0.07 v6.3.0, 0.09 v6.2.0, 0.10 v6.1.0, 0.21 v6.0.0, 0.10 v5.5.0, 0.25 v5.4.0, 0.30 v5.3.0, 0.33 v5.2.0, 0.31 v5.1.0, 0.35 v5.0.0, 0.36 v4.1.0, 0.31 v4.0.1, 0.09 v4.0.0, 0.00 v3.4.0, 0.08 v3.3.0, 0.29 v3.2.0, 0.38 v3.1.0, 0.36 v2.7.0, 0.33 v2.6.0, 0.44 v2.5.0, 0.56 v2.4.0
% Syntax : Number of clauses : 42 ( 9 unt; 15 nHn; 35 RR)
% Number of literals : 114 ( 11 equ; 57 neg)
% Maximal clause size : 5 ( 2 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 10 ( 9 usr; 0 prp; 1-3 aty)
% Number of functors : 12 ( 12 usr; 8 con; 0-2 aty)
% Number of variables : 73 ( 4 sgn)
% SPC : CNF_UNS_RFO_SEQ_NHN
% Comments : See MGT042+1.p for the mnemonic names.
% : Created with tptp2X -f tptp -t clausify:otter MGT055+1.p
%--------------------------------------------------------------------------
include('Axioms/MGT001-0.ax').
%--------------------------------------------------------------------------
cnf(definition_1_38,axiom,
( ~ has_endowment(A)
| organization(A) ) ).
cnf(definition_1_39,axiom,
( ~ has_endowment(A)
| ~ smaller_or_equal(age(A,B),eta)
| has_immunity(A,B) ) ).
cnf(definition_1_40,axiom,
( ~ has_endowment(A)
| ~ greater(age(A,B),eta)
| ~ has_immunity(A,B) ) ).
cnf(definition_1_41,axiom,
( ~ organization(A)
| smaller_or_equal(age(A,sk1(A)),eta)
| greater(age(A,sk1(A)),eta)
| has_endowment(A) ) ).
cnf(definition_1_42,axiom,
( ~ organization(A)
| smaller_or_equal(age(A,sk1(A)),eta)
| has_immunity(A,sk1(A))
| has_endowment(A) ) ).
cnf(definition_1_43,axiom,
( ~ organization(A)
| ~ has_immunity(A,sk1(A))
| greater(age(A,sk1(A)),eta)
| has_endowment(A) ) ).
cnf(definition_1_44,axiom,
( ~ organization(A)
| ~ has_immunity(A,sk1(A))
| has_immunity(A,sk1(A))
| has_endowment(A) ) ).
cnf(assumption_2_45,axiom,
( ~ organization(A)
| ~ has_immunity(A,B)
| ~ has_immunity(A,C)
| hazard_of_mortality(A,B) = hazard_of_mortality(A,C) ) ).
cnf(assumption_3_46,axiom,
( ~ organization(A)
| ~ has_immunity(A,B)
| has_immunity(A,C)
| greater(hazard_of_mortality(A,C),hazard_of_mortality(A,B)) ) ).
cnf(definition_2_47,axiom,
( ~ dissimilar(A,B,C)
| organization(A) ) ).
cnf(definition_2_48,axiom,
( ~ dissimilar(A,B,C)
| is_aligned(A,B)
| is_aligned(A,C) ) ).
cnf(definition_2_49,axiom,
( ~ dissimilar(A,B,C)
| ~ is_aligned(A,B)
| ~ is_aligned(A,C) ) ).
cnf(definition_2_50,axiom,
( ~ organization(A)
| ~ is_aligned(A,B)
| is_aligned(A,B)
| dissimilar(A,B,C) ) ).
cnf(definition_2_51,axiom,
( ~ organization(A)
| ~ is_aligned(A,B)
| is_aligned(A,C)
| dissimilar(A,B,C) ) ).
cnf(definition_2_52,axiom,
( ~ organization(A)
| ~ is_aligned(A,B)
| is_aligned(A,C)
| dissimilar(A,C,B) ) ).
cnf(definition_2_53,axiom,
( ~ organization(A)
| ~ is_aligned(A,B)
| is_aligned(A,B)
| dissimilar(A,C,B) ) ).
cnf(assumption_13_54,axiom,
( ~ organization(A)
| age(A,B) != zero
| is_aligned(A,B) ) ).
cnf(assumption_14_55,axiom,
( ~ organization(A)
| ~ is_aligned(A,B)
| is_aligned(A,C)
| greater(capability(A,B),capability(A,C)) ) ).
cnf(assumption_15_56,axiom,
( ~ organization(A)
| age(A,B) != zero
| ~ greater(age(A,C),sigma)
| dissimilar(A,B,C) ) ).
cnf(assumption_15_57,axiom,
( ~ organization(A)
| age(A,B) != zero
| ~ dissimilar(A,B,C)
| greater(age(A,C),sigma) ) ).
cnf(assumption_16_58,axiom,
( ~ organization(A)
| has_immunity(A,B)
| has_immunity(A,C)
| ~ greater(capability(A,C),capability(A,B))
| greater(hazard_of_mortality(A,B),hazard_of_mortality(A,C)) ) ).
cnf(lemma_8_59,negated_conjecture,
organization(sk2) ).
cnf(lemma_8_60,negated_conjecture,
has_endowment(sk2) ).
cnf(lemma_8_61,negated_conjecture,
age(sk2,sk3) = zero ).
cnf(lemma_8_62,negated_conjecture,
smaller_or_equal(age(sk2,sk4),eta) ).
cnf(lemma_8_63,negated_conjecture,
greater(age(sk2,sk5),eta) ).
cnf(lemma_8_64,negated_conjecture,
smaller_or_equal(age(sk2,sk5),sigma) ).
cnf(lemma_8_65,negated_conjecture,
greater(age(sk2,sk6),sigma) ).
cnf(lemma_8_66,negated_conjecture,
greater(sigma,eta) ).
cnf(lemma_8_67,negated_conjecture,
greater(eta,zero) ).
cnf(lemma_8_68,negated_conjecture,
( ~ greater(hazard_of_mortality(sk2,sk6),hazard_of_mortality(sk2,sk5))
| ~ greater(hazard_of_mortality(sk2,sk5),hazard_of_mortality(sk2,sk4))
| hazard_of_mortality(sk2,sk4) != hazard_of_mortality(sk2,sk3) ) ).
%--------------------------------------------------------------------------