TPTP Problem File: MGT053-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : MGT053-1 : TPTP v9.0.0. Released v2.4.0.
% Domain : Management (Organisation Theory)
% Problem : The dissimilarity relation is symmetric
% Version : [Han98] axioms.
% English :
% Refs : [Kam00] Kamps (2000), Email to G. Sutcliffe
% : [CH00] Carroll & Hannan (2000), The Demography of Corporation
% : [Han98] Hannan (1998), Rethinking Age Dependence in Organizati
% Source : [TPTP]
% Names :
% Status : Unsatisfiable
% Rating : 0.00 v4.0.1, 0.20 v3.7.0, 0.00 v2.4.0
% Syntax : Number of clauses : 22 ( 0 unt; 9 nHn; 17 RR)
% Number of literals : 58 ( 5 equ; 29 neg)
% Maximal clause size : 4 ( 2 avg)
% Maximal term depth : 1 ( 1 avg)
% Number of predicates : 8 ( 7 usr; 0 prp; 1-3 aty)
% Number of functors : 3 ( 3 usr; 3 con; 0-0 aty)
% Number of variables : 44 ( 4 sgn)
% SPC : CNF_UNS_EPR_SEQ_NHN
% Comments : See MGT042+1.p for the mnemonic names.
% : Created with tptp2X -f tptp -t clausify:otter MGT053+1.p
%--------------------------------------------------------------------------
include('Axioms/MGT001-0.ax').
%--------------------------------------------------------------------------
cnf(definition_2_29,axiom,
( ~ dissimilar(A,B,C)
| organization(A) ) ).
cnf(definition_2_30,axiom,
( ~ dissimilar(A,B,C)
| is_aligned(A,B)
| is_aligned(A,C) ) ).
cnf(definition_2_31,axiom,
( ~ dissimilar(A,B,C)
| ~ is_aligned(A,B)
| ~ is_aligned(A,C) ) ).
cnf(definition_2_32,axiom,
( ~ organization(A)
| ~ is_aligned(A,B)
| is_aligned(A,B)
| dissimilar(A,B,C) ) ).
cnf(definition_2_33,axiom,
( ~ organization(A)
| ~ is_aligned(A,B)
| is_aligned(A,C)
| dissimilar(A,B,C) ) ).
cnf(definition_2_34,axiom,
( ~ organization(A)
| ~ is_aligned(A,B)
| is_aligned(A,C)
| dissimilar(A,C,B) ) ).
cnf(definition_2_35,axiom,
( ~ organization(A)
| ~ is_aligned(A,B)
| is_aligned(A,B)
| dissimilar(A,C,B) ) ).
cnf(lemma_7_36,negated_conjecture,
( dissimilar(sk1,sk2,sk3)
| dissimilar(sk1,sk3,sk2) ) ).
cnf(lemma_7_37,negated_conjecture,
( dissimilar(sk1,sk2,sk3)
| ~ dissimilar(sk1,sk2,sk3) ) ).
cnf(lemma_7_38,negated_conjecture,
( ~ dissimilar(sk1,sk3,sk2)
| dissimilar(sk1,sk3,sk2) ) ).
cnf(lemma_7_39,negated_conjecture,
( ~ dissimilar(sk1,sk3,sk2)
| ~ dissimilar(sk1,sk2,sk3) ) ).
%--------------------------------------------------------------------------