TPTP Problem File: MGT050-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : MGT050-1 : TPTP v9.0.0. Released v2.4.0.
% Domain : Management (Organisation Theory)
% Problem : Unendowed organization's hazard of mortality increases with age
% Version : [Han98] axioms.
% English : An unendowed organization's hazard of mortality increases with
% its age.
% Refs : [Kam00] Kamps (2000), Email to G. Sutcliffe
% : [CH00] Carroll & Hannan (2000), The Demography of Corporation
% : [Han98] Hannan (1998), Rethinking Age Dependence in Organizati
% Source : [TPTP]
% Names :
% Status : Unsatisfiable
% Rating : 0.00 v9.0.0, 0.05 v8.1.0, 0.00 v7.3.0, 0.08 v7.0.0, 0.20 v6.4.0, 0.13 v6.3.0, 0.09 v6.2.0, 0.20 v6.1.0, 0.14 v6.0.0, 0.20 v5.5.0, 0.25 v5.4.0, 0.30 v5.3.0, 0.28 v5.2.0, 0.25 v5.1.0, 0.24 v5.0.0, 0.29 v4.1.0, 0.23 v4.0.1, 0.18 v3.7.0, 0.10 v3.5.0, 0.09 v3.4.0, 0.08 v3.3.0, 0.21 v3.2.0, 0.15 v3.1.0, 0.18 v2.7.0, 0.25 v2.6.0, 0.33 v2.5.0, 0.22 v2.4.0
% Syntax : Number of clauses : 27 ( 4 unt; 6 nHn; 24 RR)
% Number of literals : 76 ( 15 equ; 42 neg)
% Maximal clause size : 6 ( 2 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 8 ( 7 usr; 0 prp; 1-2 aty)
% Number of functors : 10 ( 10 usr; 3 con; 0-2 aty)
% Number of variables : 58 ( 5 sgn)
% SPC : CNF_UNS_RFO_SEQ_NHN
% Comments : See MGT042+1.p for the mnemonic names.
% : Created with tptp2X -f tptp -t clausify:otter MGT050+1.p
%--------------------------------------------------------------------------
include('Axioms/MGT001-0.ax').
%--------------------------------------------------------------------------
cnf(assumption_1_41,axiom,
( ~ organization(A)
| has_endowment(A)
| ~ has_immunity(A,B) ) ).
cnf(assumption_4_42,axiom,
( ~ organization(A)
| has_immunity(A,B)
| has_immunity(A,C)
| ~ greater(capability(A,C),capability(A,B))
| ~ greater_or_equal(position(A,C),position(A,B))
| smaller(hazard_of_mortality(A,C),hazard_of_mortality(A,B)) ) ).
cnf(assumption_4_43,axiom,
( ~ organization(A)
| has_immunity(A,B)
| has_immunity(A,C)
| ~ greater_or_equal(capability(A,C),capability(A,B))
| ~ greater(position(A,C),position(A,B))
| smaller(hazard_of_mortality(A,C),hazard_of_mortality(A,B)) ) ).
cnf(assumption_4_44,axiom,
( ~ organization(A)
| has_immunity(A,B)
| has_immunity(A,C)
| capability(A,C) != capability(A,B)
| position(A,C) != position(A,B)
| hazard_of_mortality(A,C) = hazard_of_mortality(A,B) ) ).
cnf(assumption_5_45,axiom,
( ~ organization(A)
| ~ greater(stock_of_knowledge(A,B),stock_of_knowledge(A,C))
| ~ smaller_or_equal(internal_friction(A,B),internal_friction(A,C))
| greater(capability(A,B),capability(A,C)) ) ).
cnf(assumption_5_46,axiom,
( ~ organization(A)
| ~ smaller_or_equal(stock_of_knowledge(A,B),stock_of_knowledge(A,C))
| ~ greater(internal_friction(A,B),internal_friction(A,C))
| smaller(capability(A,B),capability(A,C)) ) ).
cnf(assumption_5_47,axiom,
( ~ organization(A)
| stock_of_knowledge(A,B) != stock_of_knowledge(A,C)
| internal_friction(A,B) != internal_friction(A,C)
| capability(A,B) = capability(A,C) ) ).
cnf(assumption_6_48,axiom,
( ~ organization(A)
| ~ greater(external_ties(A,B),external_ties(A,C))
| greater(position(A,B),position(A,C)) ) ).
cnf(assumption_6_49,axiom,
( ~ organization(A)
| external_ties(A,B) != external_ties(A,C)
| position(A,B) = position(A,C) ) ).
cnf(assumption_10_50,axiom,
( ~ organization(A)
| stock_of_knowledge(A,B) = stock_of_knowledge(A,C) ) ).
cnf(assumption_11_51,axiom,
( ~ organization(A)
| external_ties(A,B) = external_ties(A,C) ) ).
cnf(assumption_12_52,axiom,
( ~ organization(A)
| ~ greater(age(A,B),age(A,C))
| greater(internal_friction(A,B),internal_friction(A,C)) ) ).
cnf(theorem_3_53,negated_conjecture,
organization(sk1) ).
cnf(theorem_3_54,negated_conjecture,
~ has_endowment(sk1) ).
cnf(theorem_3_55,negated_conjecture,
greater(age(sk1,sk3),age(sk1,sk2)) ).
cnf(theorem_3_56,negated_conjecture,
~ greater(hazard_of_mortality(sk1,sk3),hazard_of_mortality(sk1,sk2)) ).
%--------------------------------------------------------------------------