TPTP Problem File: MGT043-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : MGT043-1 : TPTP v9.0.0. Released v2.4.0.
% Domain : Management (Organisation Theory)
% Problem : Conditions for a higher hazard of mortality
% Version : [Han98] axioms.
% English : When an organization lacks immunity, the growth of internal
% friction elevates its hazard of mortality when its knowledge and
% the quality of its ties are constant.
% Refs : [Kam00] Kamps (2000), Email to G. Sutcliffe
% : [CH00] Carroll & Hannan (2000), The Demography of Corporation
% : [Han98] Hannan (1998), Rethinking Age Dependence in Organizati
% Source : [TPTP]
% Names :
% Status : Unsatisfiable
% Rating : 0.05 v9.0.0, 0.10 v8.1.0, 0.00 v7.5.0, 0.05 v7.4.0, 0.06 v7.3.0, 0.08 v7.1.0, 0.00 v7.0.0, 0.07 v6.4.0, 0.00 v6.1.0, 0.07 v6.0.0, 0.10 v5.5.0, 0.20 v5.4.0, 0.25 v5.3.0, 0.28 v5.2.0, 0.19 v5.1.0, 0.24 v5.0.0, 0.29 v4.1.0, 0.23 v4.0.1, 0.00 v3.4.0, 0.08 v3.3.0, 0.21 v3.2.0, 0.23 v3.1.0, 0.27 v2.7.0, 0.25 v2.6.0, 0.44 v2.4.0
% Syntax : Number of clauses : 26 ( 7 unt; 6 nHn; 25 RR)
% Number of literals : 69 ( 15 equ; 37 neg)
% Maximal clause size : 6 ( 2 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 7 ( 6 usr; 0 prp; 1-2 aty)
% Number of functors : 9 ( 9 usr; 3 con; 0-2 aty)
% Number of variables : 47 ( 0 sgn)
% SPC : CNF_UNS_RFO_SEQ_NHN
% Comments : See MGT042+1.p for the mnemonic names.
% : Created with tptp2X -f tptp -t clausify:otter MGT043+1.p
%--------------------------------------------------------------------------
include('Axioms/MGT001-0.ax').
%--------------------------------------------------------------------------
cnf(assumption_4_38,axiom,
( ~ organization(A)
| has_immunity(A,B)
| has_immunity(A,C)
| ~ greater(capability(A,C),capability(A,B))
| ~ greater_or_equal(position(A,C),position(A,B))
| smaller(hazard_of_mortality(A,C),hazard_of_mortality(A,B)) ) ).
cnf(assumption_4_39,axiom,
( ~ organization(A)
| has_immunity(A,B)
| has_immunity(A,C)
| ~ greater_or_equal(capability(A,C),capability(A,B))
| ~ greater(position(A,C),position(A,B))
| smaller(hazard_of_mortality(A,C),hazard_of_mortality(A,B)) ) ).
cnf(assumption_4_40,axiom,
( ~ organization(A)
| has_immunity(A,B)
| has_immunity(A,C)
| capability(A,C) != capability(A,B)
| position(A,C) != position(A,B)
| hazard_of_mortality(A,C) = hazard_of_mortality(A,B) ) ).
cnf(assumption_5_41,axiom,
( ~ organization(A)
| ~ greater(stock_of_knowledge(A,B),stock_of_knowledge(A,C))
| ~ smaller_or_equal(internal_friction(A,B),internal_friction(A,C))
| greater(capability(A,B),capability(A,C)) ) ).
cnf(assumption_5_42,axiom,
( ~ organization(A)
| ~ smaller_or_equal(stock_of_knowledge(A,B),stock_of_knowledge(A,C))
| ~ greater(internal_friction(A,B),internal_friction(A,C))
| smaller(capability(A,B),capability(A,C)) ) ).
cnf(assumption_5_43,axiom,
( ~ organization(A)
| stock_of_knowledge(A,B) != stock_of_knowledge(A,C)
| internal_friction(A,B) != internal_friction(A,C)
| capability(A,B) = capability(A,C) ) ).
cnf(assumption_6_44,axiom,
( ~ organization(A)
| ~ greater(external_ties(A,B),external_ties(A,C))
| greater(position(A,B),position(A,C)) ) ).
cnf(assumption_6_45,axiom,
( ~ organization(A)
| external_ties(A,B) != external_ties(A,C)
| position(A,B) = position(A,C) ) ).
cnf(lemma_2_46,negated_conjecture,
organization(sk1) ).
cnf(lemma_2_47,negated_conjecture,
~ has_immunity(sk1,sk2) ).
cnf(lemma_2_48,negated_conjecture,
~ has_immunity(sk1,sk3) ).
cnf(lemma_2_49,negated_conjecture,
stock_of_knowledge(sk1,sk3) = stock_of_knowledge(sk1,sk2) ).
cnf(lemma_2_50,negated_conjecture,
greater(internal_friction(sk1,sk3),internal_friction(sk1,sk2)) ).
cnf(lemma_2_51,negated_conjecture,
external_ties(sk1,sk2) = external_ties(sk1,sk3) ).
cnf(lemma_2_52,negated_conjecture,
~ greater(hazard_of_mortality(sk1,sk3),hazard_of_mortality(sk1,sk2)) ).
%--------------------------------------------------------------------------