TPTP Problem File: MGT040+2.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : MGT040+2 : TPTP v9.0.0. Released v2.0.0.
% Domain : Management (Organisation Theory)
% Problem : Selection favours FMs above EPs if change is not extreme
% Version : [PM93] axioms.
% English : Selection favors first movers above efficient producers if
% environmental change is rapid but not extreme during the
% observational period.
% Refs : [PM93] Peli & Masuch (1993), The Logic of Propogation Strateg
% : [PM94] Peli & Masuch (1994), The Logic of Propogation Strateg
% : [Kam95] Kamps (1995), Email to G. Sutcliffe
% Source : [PM93]
% Names : Theorem 9* [PM93]
% Status : CounterSatisfiable
% Rating : 0.00 v7.5.0, 0.20 v7.4.0, 0.00 v6.1.0, 0.09 v6.0.0, 0.00 v4.1.0, 0.20 v4.0.1, 0.00 v3.5.0, 0.33 v3.4.0, 0.00 v3.1.0, 0.17 v2.7.0, 0.00 v2.5.0, 0.33 v2.4.0, 0.00 v2.1.0
% Syntax : Number of formulae : 14 ( 2 unt; 0 def)
% Number of atoms : 54 ( 1 equ)
% Maximal formula atoms : 7 ( 3 avg)
% Number of connectives : 48 ( 8 ~; 1 |; 22 &)
% ( 0 <=>; 17 =>; 0 <=; 0 <~>)
% Maximal formula depth : 9 ( 5 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 11 ( 10 usr; 0 prp; 1-3 aty)
% Number of functors : 6 ( 6 usr; 3 con; 0-2 aty)
% Number of variables : 20 ( 20 !; 0 ?)
% SPC : FOF_CSA_RFO_SEQ
% Comments :
%--------------------------------------------------------------------------
%----Subsitution axioms
%----Problem axioms
%----MP3. If selection favors organizations of a certain propagation
%----strategy, s1, above an other, s2, at the endpoints of all
%----environments in the observational period, then it favors s1 above
%----s2 during the whole observational period.
%----Instantiation: EP = s1 ; FM = s2
fof(mp3_favoured_trategy,axiom,
! [P] :
( ( observational_period(P)
& propagation_strategy(first_movers)
& propagation_strategy(efficient_producers)
& ! [E] :
( ( environment(E)
& in_environment(P,E) )
=> selection_favors(efficient_producers,first_movers,end_time(E)) ) )
=> selection_favors(efficient_producers,first_movers,P) ) ).
%----MP5. If environmental change is rapid during an observational
%----period, then no environment in the observational period contains a
%----critical point.
fof(mp5_rapid_change_is_non_critical,axiom,
! [P] :
( ( observational_period(P)
& rapid_change(P) )
=> ! [E] :
( ( environment(E)
& in_environment(P,E) )
=> ~ in_environment(E,critical_point(E)) ) ) ).
%----MP6. If environmental change is not extreme during an observational
%----period, then no environment stays empty during this period.
fof(mp6_not_extreme_change_means_not_empty,axiom,
! [P] :
( ( observational_period(P)
& ~ extreme(P) )
=> ! [E] :
( ( environment(E)
& in_environment(P,E) )
=> ~ empty(E) ) ) ).
%----MP. First movers and efficient producers are organizational sets of a
%----certain propagation strategy.
fof(mp_organizational_sets1,axiom,
propagation_strategy(first_movers) ).
fof(mp_organizational_sets2,axiom,
propagation_strategy(efficient_producers) ).
%----MP. The endpoint of an environment belongs to the environment.
fof(mp_endpoint_in_environment,axiom,
! [E] :
( environment(E)
=> in_environment(E,end_time(E)) ) ).
%----MP. The critical point can not occur before the environment opens.
fof(mp_critical_point_not_before_opening,axiom,
! [E] :
( ( environment(E)
& ~ in_environment(E,critical_point(E)) )
=> greater(critical_point(E),end_time(E)) ) ).
%----MP. If an environment does not remain empty, then organizations appear
%----in it before it ends.
fof(mp_non_empty_means_organisations,axiom,
! [E] :
( ( environment(E)
& ~ empty(E) )
=> greater_or_equal(end_time(E),appear(an_organisation,E)) ) ).
%----MP. If selection favors a group of organizations, s, until a certain
%----point of time in the environment, to, then selection would have also
%----favored "s" until the ending point of this environment if the
%----environment had closed before to was reached.
%----INSTANTIATION: s = FM ; to = critical_point(e)
fof(mp_selection_favours_in_time,axiom,
! [E,T] :
( ( environment(E)
& greater_or_equal(T,appear(efficient_producers,E))
& greater(critical_point(E),T)
& ( in_environment(E,critical_point(E))
=> selection_favors(first_movers,efficient_producers,T) ) )
=> ( ~ in_environment(E,critical_point(E))
=> selection_favors(first_movers,efficient_producers,end_time(E)) ) ) ).
%----MP. on "greater or equal to"
fof(mp_greater_or_equal,axiom,
! [X,Y] :
( greater_or_equal(X,Y)
=> ( greater(X,Y)
| X = Y ) ) ).
%----MP. on appearance of EP
fof(mp_appearance_of_EP,axiom,
! [E,T] :
( ( in_environment(E,T)
& ~ greater(appear(efficient_producers,E),T) )
=> greater_or_equal(T,appear(efficient_producers,E)) ) ).
%----T2. Selection favors first movers above efficient producers
%----between the appearence of first movers and the appearence of efficient
%----producers.
fof(t2,hypothesis,
! [E,T] :
( ( environment(E)
& in_environment(E,T)
& greater_or_equal(T,appear(first_movers,E))
& greater(appear(efficient_producers,E),T) )
=> selection_favors(first_movers,efficient_producers,T) ) ).
%----T3. Selection favors first movers above efficient producers
%----between the appearence of efficient producers and the critical point.
fof(t3,hypothesis,
! [E,T] :
( ( environment(E)
& in_environment(E,critical_point(E))
& greater_or_equal(T,appear(efficient_producers,E))
& greater(critical_point(E),T) )
=> selection_favors(first_movers,efficient_producers,T) ) ).
%----GOAL: T9. Selection favors first movers to efficient producers if
%----environmental change is rapid, provided that environmental change
%----during the observational period is not extreme.
fof(prove_t9,conjecture,
! [P] :
( ( observational_period(P)
& rapid_change(P)
& ~ extreme(P) )
=> selection_favors(first_movers,efficient_producers,P) ) ).
%--------------------------------------------------------------------------