TPTP Problem File: MGT039-2.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : MGT039-2 : TPTP v9.0.0. Released v2.4.0.
% Domain : Management (Organisation Theory)
% Problem : Selection favours EPs above Fms if change is slow
% Version : [PM93] axioms.
% English : Selection favors efficient producers above first movers if
% environmental change is slow.
% Refs : [PM93] Peli & Masuch (1993), The Logic of Propogation Strateg
% : [PM94] Peli & Masuch (1994), The Logic of Propogation Strateg
% : [Kam95] Kamps (1995), Email to G. Sutcliffe
% Source : [TPTP]
% Names :
% Status : Unsatisfiable
% Rating : 0.10 v9.0.0, 0.15 v8.2.0, 0.10 v8.1.0, 0.05 v7.5.0, 0.16 v7.4.0, 0.12 v7.3.0, 0.08 v7.1.0, 0.00 v7.0.0, 0.13 v6.4.0, 0.07 v6.3.0, 0.00 v6.2.0, 0.10 v6.1.0, 0.21 v6.0.0, 0.20 v5.5.0, 0.30 v5.3.0, 0.33 v5.2.0, 0.19 v5.1.0, 0.24 v5.0.0, 0.21 v4.1.0, 0.08 v4.0.1, 0.09 v4.0.0, 0.00 v3.4.0, 0.08 v3.3.0, 0.21 v3.2.0, 0.31 v3.1.0, 0.27 v2.7.0, 0.33 v2.6.0, 0.22 v2.5.0, 0.44 v2.4.0
% Syntax : Number of clauses : 28 ( 5 unt; 4 nHn; 28 RR)
% Number of literals : 91 ( 5 equ; 61 neg)
% Maximal clause size : 6 ( 3 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 11 ( 10 usr; 0 prp; 1-4 aty)
% Number of functors : 12 ( 12 usr; 4 con; 0-2 aty)
% Number of variables : 47 ( 0 sgn)
% SPC : CNF_UNS_RFO_SEQ_NHN
% Comments : Created with tptp2X -f tptp -t clausify:otter MGT039+2.p
%--------------------------------------------------------------------------
cnf(mp1_high_growth_rates_33,axiom,
( ~ environment(A)
| ~ subpopulations(B,C,A,D)
| ~ greater(growth_rate(C,D),growth_rate(B,D))
| selection_favors(C,B,D) ) ).
cnf(mp2_favour_members_34,axiom,
( ~ environment(A)
| ~ subpopulation(B,A,C)
| ~ subpopulation(D,A,C)
| ~ greater(cardinality_at_time(B,C),zero)
| cardinality_at_time(D,C) != zero
| selection_favors(B,D,C) ) ).
cnf(mp3_favoured_trategy_35,axiom,
( ~ observational_period(A)
| ~ propagation_strategy(first_movers)
| ~ propagation_strategy(efficient_producers)
| environment(sk1(A))
| selection_favors(efficient_producers,first_movers,A) ) ).
cnf(mp3_favoured_trategy_36,axiom,
( ~ observational_period(A)
| ~ propagation_strategy(first_movers)
| ~ propagation_strategy(efficient_producers)
| in_environment(A,sk1(A))
| selection_favors(efficient_producers,first_movers,A) ) ).
cnf(mp3_favoured_trategy_37,axiom,
( ~ observational_period(A)
| ~ propagation_strategy(first_movers)
| ~ propagation_strategy(efficient_producers)
| ~ selection_favors(efficient_producers,first_movers,end_time(sk1(A)))
| selection_favors(efficient_producers,first_movers,A) ) ).
cnf(mp4_critical_point_38,axiom,
( ~ observational_period(A)
| ~ slow_change(A)
| ~ environment(B)
| ~ in_environment(A,B)
| in_environment(B,sk2(B,A)) ) ).
cnf(mp4_critical_point_39,axiom,
( ~ observational_period(A)
| ~ slow_change(A)
| ~ environment(B)
| ~ in_environment(A,B)
| greater(sk2(B,A),critical_point(B)) ) ).
cnf(mp_organizational_sets1_40,axiom,
propagation_strategy(first_movers) ).
cnf(mp_organizational_sets2_41,axiom,
propagation_strategy(efficient_producers) ).
cnf(mp_time_in_environment_42,axiom,
( ~ environment(A)
| ~ greater_or_equal(B,start_time(A))
| ~ greater_or_equal(end_time(A),B)
| in_environment(A,B) ) ).
cnf(mp_environment_end_point_43,axiom,
( ~ environment(A)
| ~ in_environment(A,B)
| greater_or_equal(end_time(A),B) ) ).
cnf(mp_contains_FM_and_EP_44,axiom,
( ~ environment(A)
| ~ in_environment(A,B)
| ~ greater(cardinality_at_time(first_movers,B),zero)
| ~ greater(cardinality_at_time(efficient_producers,B),zero)
| subpopulations(first_movers,efficient_producers,A,B) ) ).
cnf(mp_first_movers_exist_45,axiom,
( ~ environment(A)
| ~ in_environment(A,B)
| greater_or_equal(cardinality_at_time(first_movers,B),zero) ) ).
cnf(mp_subpopulations_46,axiom,
( ~ environment(A)
| ~ in_environment(A,B)
| subpopulation(first_movers,A,B) ) ).
cnf(mp_subpopulations_47,axiom,
( ~ environment(A)
| ~ in_environment(A,B)
| subpopulation(efficient_producers,A,B) ) ).
cnf(mp_critical_point_after_EP_48,axiom,
( ~ environment(A)
| greater_or_equal(critical_point(A),appear(efficient_producers,A)) ) ).
cnf(mp_time_of_critical_point_49,axiom,
( ~ environment(A)
| greater_or_equal(critical_point(A),start_time(A)) ) ).
cnf(mp_greater_transitivity_50,axiom,
( ~ greater(A,B)
| ~ greater(B,C)
| greater(A,C) ) ).
cnf(mp_beginning_and_ending_51,axiom,
( ~ environment(A)
| ~ greater(B,start_time(A))
| greater(B,end_time(A))
| greater_or_equal(end_time(A),B) ) ).
cnf(mp_greater_or_equal_52,axiom,
( ~ greater_or_equal(A,B)
| greater(A,B)
| A = B ) ).
cnf(mp_greater_or_equal_53,axiom,
( ~ greater(A,B)
| greater_or_equal(A,B) ) ).
cnf(mp_greater_or_equal_54,axiom,
( A != B
| greater_or_equal(A,B) ) ).
cnf(d1_55,hypothesis,
( ~ environment(A)
| B != critical_point(A)
| ~ greater(growth_rate(efficient_producers,B),growth_rate(first_movers,B)) ) ).
cnf(d1_56,hypothesis,
( ~ environment(A)
| B != critical_point(A)
| ~ subpopulations(first_movers,efficient_producers,A,C)
| ~ greater(C,B)
| greater(growth_rate(efficient_producers,C),growth_rate(first_movers,C)) ) ).
cnf(t6_57,hypothesis,
( ~ environment(A)
| ~ in_environment(A,B)
| ~ greater_or_equal(B,appear(efficient_producers,A))
| greater(cardinality_at_time(efficient_producers,B),zero) ) ).
cnf(prove_t8_58,negated_conjecture,
observational_period(sk3) ).
cnf(prove_t8_59,negated_conjecture,
slow_change(sk3) ).
cnf(prove_t8_60,negated_conjecture,
~ selection_favors(efficient_producers,first_movers,sk3) ).
%--------------------------------------------------------------------------