TPTP Problem File: MGT038+1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : MGT038+1 : TPTP v9.0.0. Released v2.0.0.
% Domain : Management (Organisation Theory)
% Problem : FMs become extinct in stable environments
% Version : [PB+94] axioms : Reduced & Augmented > Complete.
% English : First movers become extinct past a certain point in time
% in stable environments.
% Refs : [PM93] Peli & Masuch (1993), The Logic of Propogation Strateg
% : [PM94] Peli & Masuch (1994), The Logic of Propogation Strateg
% : [Kam95] Kamps (1995), Email to G. Sutcliffe
% Source : [Kam95]
% Names :
% Status : CounterSatisfiable
% Rating : 0.00 v7.5.0, 0.20 v7.4.0, 0.00 v6.1.0, 0.09 v6.0.0, 0.00 v4.1.0, 0.40 v4.0.1, 0.20 v4.0.0, 0.00 v3.5.0, 0.33 v3.4.0, 0.00 v3.1.0, 0.17 v2.7.0, 0.00 v2.1.0
% Syntax : Number of formulae : 8 ( 1 unt; 0 def)
% Number of atoms : 27 ( 2 equ)
% Maximal formula atoms : 5 ( 3 avg)
% Number of connectives : 19 ( 0 ~; 0 |; 12 &)
% ( 0 <=>; 7 =>; 0 <=; 0 <~>)
% Maximal formula depth : 8 ( 5 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 7 ( 6 usr; 0 prp; 1-2 aty)
% Number of functors : 9 ( 9 usr; 7 con; 0-2 aty)
% Number of variables : 15 ( 12 !; 3 ?)
% SPC : FOF_CSA_RFO_SEQ
% Comments :
%--------------------------------------------------------------------------
%----Subsitution axioms
%----Problem axioms
%----MP7. The cardinality of the first mover set is always integer.
fof(mp7_first_movers_exist,axiom,
finite_set(first_movers) ).
%----MP. First movers appear in stable environments.
fof(mp_stable_first_movers,axiom,
! [E] :
( ( environment(E)
& stable(E) )
=> in_environment(E,appear(first_movers,E)) ) ).
%----MP. If a set with finitely many elements always contracts past a
%----certain point of time, then it becomes empty sooner or later.
fof(mp_contracting_time,axiom,
! [S,To] :
( ( finite_set(S)
& contracts_from(To,S) )
=> ? [T2] :
( greater(T2,To)
& cardinality_at_time(s,t2) = zero ) ) ).
%----MP. Stable environments are long.
fof(mp_long_stable_environments,axiom,
! [E,T1,T2] :
( ( environment(E)
& stable(E)
& in_environment(E,T1)
& greater(T2,T1) )
=> in_environment(E,T2) ) ).
%----MP. inequality
fof(mp_greater_transitivity,axiom,
! [X,Y,Z] :
( ( greater(X,Y)
& greater(Y,Z) )
=> greater(X,Z) ) ).
%----L9. The first mover set begins to contract past a certain time in
%----stable environments.
fof(l9,hypothesis,
! [E] :
( ( environment(E)
& stable(E) )
=> ? [To] :
( greater(To,appear(efficient_producers,E))
& contracts_from(To,first_movers) ) ) ).
%----A13. First movers appear sooner in the environment, than efficient
%----producers.
fof(a13,hypothesis,
! [E] :
( environment(E)
=> greater(appear(efficient_producers,e),appear(first_movers,E)) ) ).
%----GOAL: T7. First movers disappear past a certain time after their
%----appearence in stable environments.
fof(prove_t7,conjecture,
! [E] :
( ( environment(E)
& stable(E) )
=> ? [To] :
( in_environment(E,To)
& greater(To,appear(first_movers,E))
& cardinality_at_time(first_movers,to) = zero ) ) ).
%--------------------------------------------------------------------------