TPTP Problem File: MGT037-2.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : MGT037-2 : TPTP v9.0.0. Released v2.4.0.
% Domain : Management (Organisation Theory)
% Problem : Once appeared, efficient producers do not disappear
% Version : [PM93] axioms.
% English :
% Refs : [PM93] Peli & Masuch (1993), The Logic of Propogation Strateg
% : [PM94] Peli & Masuch (1994), The Logic of Propogation Strateg
% : [PB+94] Peli et al. (1994), A Logical Approach to Formalizing
% Source : [TPTP]
% Names :
% Status : Satisfiable
% Rating : 0.00 v7.4.0, 0.09 v7.3.0, 0.00 v6.3.0, 0.12 v6.2.0, 0.10 v6.1.0, 0.11 v6.0.0, 0.00 v5.2.0, 0.10 v5.0.0, 0.11 v4.1.0, 0.14 v4.0.1, 0.20 v4.0.0, 0.00 v3.5.0, 0.33 v3.4.0, 0.25 v3.3.0, 0.00 v3.2.0, 0.20 v3.1.0, 0.00 v2.6.0, 0.14 v2.5.0, 0.67 v2.4.0
% Syntax : Number of clauses : 27 ( 5 unt; 5 nHn; 27 RR)
% Number of literals : 92 ( 11 equ; 64 neg)
% Maximal clause size : 5 ( 3 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 8 ( 7 usr; 0 prp; 1-3 aty)
% Number of functors : 15 ( 15 usr; 6 con; 0-2 aty)
% Number of variables : 47 ( 0 sgn)
% SPC : CNF_SAT_RFO_EQU_NUE
% Comments : Created with tptp2X -f tptp -t clausify:otter MGT037+2.p
%--------------------------------------------------------------------------
cnf(mp_previous_negative_growth_28,axiom,
( ~ environment(A)
| ~ greater_or_equal(B,appear(efficient_producers,A))
| cardinality_at_time(efficient_producers,B) != zero
| greater(sk1(B,A),appear(efficient_producers,A)) ) ).
cnf(mp_previous_negative_growth_29,axiom,
( ~ environment(A)
| ~ greater_or_equal(B,appear(efficient_producers,A))
| cardinality_at_time(efficient_producers,B) != zero
| in_environment(A,sk1(B,A)) ) ).
cnf(mp_previous_negative_growth_30,axiom,
( ~ environment(A)
| ~ greater_or_equal(B,appear(efficient_producers,A))
| cardinality_at_time(efficient_producers,B) != zero
| greater(B,sk1(B,A)) ) ).
cnf(mp_previous_negative_growth_31,axiom,
( ~ environment(A)
| ~ greater_or_equal(B,appear(efficient_producers,A))
| cardinality_at_time(efficient_producers,B) != zero
| greater(zero,growth_rate(efficient_producers,sk1(B,A))) ) ).
cnf(mp_start_of_organizations_32,axiom,
( ~ environment(A)
| ~ in_environment(A,B)
| ~ greater(appear(an_organisation,A),B)
| number_of_organizations(A,B) = zero ) ).
cnf(mp_non_decreasing_33,axiom,
( ~ environment(A)
| ~ in_environment(A,B)
| decreases(number_of_organizations(A,B))
| subpopulation(sk2(B,A),A,B) ) ).
cnf(mp_non_decreasing_34,axiom,
( ~ environment(A)
| ~ in_environment(A,B)
| decreases(number_of_organizations(A,B))
| greater(cardinality_at_time(sk2(B,A),B),zero) ) ).
cnf(mp_non_decreasing_35,axiom,
( ~ environment(A)
| ~ in_environment(A,B)
| decreases(number_of_organizations(A,B))
| ~ greater(zero,growth_rate(sk2(B,A),B)) ) ).
cnf(mp_no_members_36,axiom,
( ~ environment(A)
| ~ in_environment(A,B)
| number_of_organizations(A,B) != zero
| ~ subpopulation(C,A,B)
| cardinality_at_time(C,B) = zero ) ).
cnf(mp_subpopulations_37,axiom,
( ~ environment(A)
| ~ in_environment(A,B)
| subpopulation(first_movers,A,B) ) ).
cnf(mp_subpopulations_38,axiom,
( ~ environment(A)
| ~ in_environment(A,B)
| subpopulation(efficient_producers,A,B) ) ).
cnf(mp_empty_not_decreasing_39,axiom,
( cardinality_at_time(A,B) != zero
| ~ greater(zero,growth_rate(A,B)) ) ).
cnf(mp_efficient_producers_exist_40,axiom,
( ~ environment(A)
| ~ in_environment(A,B)
| cardinality_at_time(efficient_producers,B) = zero
| greater(cardinality_at_time(efficient_producers,B),zero) ) ).
cnf(mp_constant_not_decrease_41,axiom,
( ~ constant(A)
| ~ decreases(A) ) ).
cnf(mp_environment_inequality_42,axiom,
( ~ environment(A)
| ~ in_environment(A,B)
| ~ greater_or_equal(B,appear(an_organisation,A))
| greater(appear(an_organisation,A),B) ) ).
cnf(a1_43,hypothesis,
( ~ environment(A)
| ~ in_environment(A,B)
| ~ greater_or_equal(B,appear(an_organisation,A))
| greater(number_of_organizations(A,B),zero) ) ).
cnf(a2_44,hypothesis,
greater(resilience(efficient_producers),resilience(first_movers)) ).
cnf(a4_45,hypothesis,
( ~ environment(A)
| ~ in_environment(A,B)
| ~ greater(number_of_organizations(A,B),zero)
| ~ greater(equilibrium(A),B)
| decreases(resources(A,B)) ) ).
cnf(a4_46,hypothesis,
( ~ environment(A)
| ~ in_environment(A,B)
| ~ greater(number_of_organizations(A,B),zero)
| greater(equilibrium(A),B)
| constant(resources(A,B)) ) ).
cnf(a7_47,hypothesis,
( ~ environment(A)
| ~ in_environment(A,B)
| ~ decreases(resources(A,B))
| ~ decreases(number_of_organizations(A,B)) ) ).
cnf(a7_48,hypothesis,
( ~ environment(A)
| ~ in_environment(A,B)
| ~ constant(resources(A,B))
| constant(number_of_organizations(A,B)) ) ).
cnf(a11_49,hypothesis,
( ~ environment(A)
| ~ subpopulation(B,A,C)
| ~ greater(cardinality_at_time(B,C),zero)
| B = efficient_producers
| B = first_movers ) ).
cnf(a13_50,hypothesis,
( ~ environment(A)
| ~ in_environment(A,B)
| greater(zero,growth_rate(C,B))
| ~ greater(resilience(D),resilience(C))
| ~ greater(zero,growth_rate(D,B)) ) ).
cnf(prove_t6_51,negated_conjecture,
environment(sk3) ).
cnf(prove_t6_52,negated_conjecture,
in_environment(sk3,sk4) ).
cnf(prove_t6_53,negated_conjecture,
greater_or_equal(sk4,appear(efficient_producers,sk3)) ).
cnf(prove_t6_54,negated_conjecture,
~ greater(cardinality_at_time(efficient_producers,sk4),zero) ).
%--------------------------------------------------------------------------