TPTP Problem File: MGT037+2.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : MGT037+2 : TPTP v9.0.0. Released v2.0.0.
% Domain : Management (Organisation Theory)
% Problem : Once appeared, efficient producers do not disappear
% Version : [PM93] axioms.
% English :
% Refs : [PM93] Peli & Masuch (1993), The Logic of Propogation Strateg
% : [PM94] Peli & Masuch (1994), The Logic of Propogation Strateg
% : [PB+94] Peli et al. (1994), A Logical Approach to Formalizing
% Source : [PM93]
% Names : THEOREM 6 [PM93]
% : T6 [PB+94]
% Status : CounterSatisfiable
% Rating : 0.00 v7.5.0, 0.20 v7.4.0, 0.00 v6.2.0, 0.09 v6.0.0, 0.00 v4.1.0, 0.40 v4.0.1, 0.20 v4.0.0, 0.00 v3.5.0, 0.33 v3.4.0, 0.00 v3.2.0, 0.33 v2.6.0, 0.25 v2.5.0, 0.33 v2.4.0, 0.00 v2.1.0
% Syntax : Number of formulae : 16 ( 1 unt; 0 def)
% Number of atoms : 70 ( 8 equ)
% Maximal formula atoms : 7 ( 4 avg)
% Number of connectives : 63 ( 9 ~; 3 |; 32 &)
% ( 0 <=>; 19 =>; 0 <=; 0 <~>)
% Maximal formula depth : 10 ( 6 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 8 ( 7 usr; 0 prp; 1-3 aty)
% Number of functors : 11 ( 11 usr; 4 con; 0-2 aty)
% Number of variables : 35 ( 33 !; 2 ?)
% SPC : FOF_CSA_RFO_SEQ
% Comments :
%--------------------------------------------------------------------------
%----Subsitution axioms
%----Problem axioms
%----MP. If the number of efficient producers is zero in the environment
%----past their appearence, then there had to be a time not before their
%----appearence when their growth rate was negative.
fof(mp_previous_negative_growth,axiom,
! [E,T] :
( ( environment(E)
& greater_or_equal(T,appear(efficient_producers,E))
& cardinality_at_time(efficient_producers,T) = zero )
=> ? [To] :
( greater(To,appear(efficient_producers,E))
& in_environment(E,To)
& greater(T,To)
& greater(zero,growth_rate(efficient_producers,To)) ) ) ).
%----MP. The number of organizations in the environment is zero until the
%----appearence of first organizations.
fof(mp_start_of_organizations,axiom,
! [E,T] :
( ( environment(E)
& in_environment(E,T)
& greater(appear(an_organisation,E),T) )
=> number_of_organizations(E,T) = zero ) ).
%----MP. If the number of organizations in the environment cdoes not
%----decrease, then there is an organizational group in the environment
%----that does not decrease.
fof(mp_non_decreasing,axiom,
! [E,T] :
( ( environment(E)
& in_environment(E,T)
& ~ decreases(number_of_organizations(E,T)) )
=> ? [X] :
( subpopulation(X,E,T)
& greater(cardinality_at_time(X,T),zero)
& ~ greater(zero,growth_rate(X,T)) ) ) ).
%----MP. If the sum of organizations in an environment is zero, then no
%----organizational group has members in the environment.
fof(mp_no_members,axiom,
! [E,T,X] :
( ( environment(E)
& in_environment(E,T)
& number_of_organizations(E,T) = zero
& subpopulation(X,E,T) )
=> cardinality_at_time(X,T) = zero ) ).
%----MP. First movers and efficient producers are subpopulations.
fof(mp_subpopulations,axiom,
! [E,T] :
( ( environment(E)
& in_environment(E,T) )
=> ( subpopulation(first_movers,E,T)
& subpopulation(efficient_producers,E,T) ) ) ).
%----MP. An empty group of objects does not decrease in number.
fof(mp_empty_not_decreasing,axiom,
! [S,T] :
( cardinality_at_time(S,T) = zero
=> ~ greater(zero,growth_rate(S,T)) ) ).
%----MP. The number of efficient producers is non-negative.
fof(mp_efficient_producers_exist,axiom,
! [E,T] :
( ( environment(E)
& in_environment(E,T) )
=> ( cardinality_at_time(efficient_producers,T) = zero
| greater(cardinality_at_time(efficient_producers,T),zero) ) ) ).
%----MP. If something is constant, then it does not decreases.
fof(mp_constant_not_decrease,axiom,
! [X] :
( constant(X)
=> ~ decreases(X) ) ).
%----MP. on inquality
fof(mp_environment_inequality,axiom,
! [E,T] :
( ( environment(E)
& in_environment(E,T) )
=> ( ~ greater_or_equal(T,appear(an_organisation,E))
| greater(appear(an_organisation,E),T) ) ) ).
%----A1. The environment has a positive carrying capacity
fof(a1,hypothesis,
! [E,T] :
( ( environment(E)
& in_environment(E,T)
& greater_or_equal(T,appear(an_organisation,E)) )
=> greater(number_of_organizations(E,T),zero) ) ).
%----A2. Efficient producers are more resilient than first movers.
fof(a2,hypothesis,
greater(resilience(efficient_producers),resilience(first_movers)) ).
%----A4. Resource availability decreases until equilibrium is reached.
fof(a4,hypothesis,
! [E,T] :
( ( environment(E)
& in_environment(E,T)
& greater(number_of_organizations(E,T),zero) )
=> ( ( greater(equilibrium(E),T)
=> decreases(resources(E,T)) )
& ( ~ greater(equilibrium(E),T)
=> constant(resources(E,T)) ) ) ) ).
%----A7. If resource availability decreases, then the number of
%----organizations increases or constant.
fof(a7,hypothesis,
! [E,T] :
( ( environment(E)
& in_environment(E,T) )
=> ( ( decreases(resources(E,T))
=> ~ decreases(number_of_organizations(E,T)) )
& ( constant(resources(E,T))
=> constant(number_of_organizations(E,T)) ) ) ) ).
%----A11. The population contains only first movers and efficient producers.
fof(a11,hypothesis,
! [E,X,T] :
( ( environment(E)
& subpopulation(X,E,T)
& greater(cardinality_at_time(X,T),zero) )
=> ( X = efficient_producers
| X = first_movers ) ) ).
%----A13. If a subpopulation does not decrease in members, then a more
%----resilient subpopulation does not decrease either.
fof(a13,hypothesis,
! [E,S1,S2,T] :
( ( environment(E)
& in_environment(E,T)
& ~ greater(zero,growth_rate(S1,T))
& greater(resilience(S2),resilience(S1)) )
=> ~ greater(zero,growth_rate(S2,T)) ) ).
%----GOAL: T6. Once appeared in an environment, efficient producers do not
%----disappear.
fof(prove_t6,conjecture,
! [E,T] :
( ( environment(E)
& in_environment(E,T)
& greater_or_equal(T,appear(efficient_producers,E)) )
=> greater(cardinality_at_time(efficient_producers,T),zero) ) ).
%--------------------------------------------------------------------------