TPTP Problem File: MGT036+3.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : MGT036+3 : TPTP v9.0.0. Released v2.0.0.
% Domain : Management (Organisation Theory)
% Problem : First movers never outcompete efficient producers.
% Version : [PM93] axioms.
% English :
% Refs : [PM93] Peli & Masuch (1993), The Logic of Propogation Strateg
% : [PM94] Peli & Masuch (1994), The Logic of Propogation Strateg
% Source : [PM93]
% Names : THEOREM 5* [PM93]
% Status : Theorem
% Rating : 0.00 v6.1.0, 0.04 v6.0.0, 0.25 v5.5.0, 0.04 v5.3.0, 0.13 v5.2.0, 0.00 v2.1.0
% Syntax : Number of formulae : 4 ( 0 unt; 0 def)
% Number of atoms : 15 ( 0 equ)
% Maximal formula atoms : 5 ( 3 avg)
% Number of connectives : 11 ( 0 ~; 0 |; 8 &)
% ( 1 <=>; 2 =>; 0 <=; 0 <~>)
% Maximal formula depth : 8 ( 7 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 5 ( 5 usr; 0 prp; 1-4 aty)
% Number of functors : 4 ( 4 usr; 3 con; 0-2 aty)
% Number of variables : 12 ( 8 !; 4 ?)
% SPC : FOF_THM_RFO_NEQ
% Comments :
%--------------------------------------------------------------------------
%----MP. The "pop" predicate is symmetric: if S1 and S2 are subpopulations,
%----then S2 and S1 are also subpopulations.
fof(mp_symmetry_of_subpopulations,axiom,
! [E,S1,S2,T] :
( ( environment(E)
& subpopulations(S1,S2,E,T) )
=> subpopulations(S2,S1,E,T) ) ).
%----D2. A subpopulation outcompetes an other in an environment at a
%----certain time, if and only if, it has non-negative growth rate while
%----the other subpopulation has negative growth rate.
fof(d2,hypothesis,
! [E,S1,S2,T] :
( ( environment(E)
& subpopulations(S1,S2,E,T) )
=> ( ( greater_or_equal(growth_rate(S2,T),zero)
& greater(zero,growth_rate(S1,T)) )
<=> outcompetes(S2,S1,T) ) ) ).
%----A13*: Efficient producers may decrease in members even when the first
%----mover subpopulation grows or stagnates.
fof(a13_star,hypothesis,
? [E,T] :
( environment(E)
& subpopulations(first_movers,efficient_producers,E,T)
& greater_or_equal(growth_rate(first_movers,T),zero)
& greater(zero,growth_rate(efficient_producers,T)) ) ).
%----GOAL: T5*. First movers may outcompete efficient producers in some
%----environments.
fof(prove_t5_star,conjecture,
? [E,T] :
( environment(E)
& subpopulations(first_movers,efficient_producers,E,T)
& outcompetes(first_movers,efficient_producers,T) ) ).
%--------------------------------------------------------------------------