TPTP Problem File: MGT036+1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : MGT036+1 : TPTP v9.0.0. Released v2.0.0.
% Domain : Management (Organisation Theory)
% Problem : First movers never outcompete efficient producers.
% Version : [PB+94] axioms : Reduced & Augmented > Complete.
% English :
% Refs : [PM93] Peli & Masuch (1993), The Logic of Propogation Strateg
% : [PM94] Peli & Masuch (1994), The Logic of Propogation Strateg
% : [Kam95] Kamps (1995), Email to G. Sutcliffe
% Source : [Kam95]
% Names :
% Status : Theorem
% Rating : 0.07 v9.0.0, 0.00 v6.1.0, 0.04 v6.0.0, 0.25 v5.5.0, 0.12 v5.4.0, 0.09 v5.3.0, 0.17 v5.2.0, 0.07 v5.0.0, 0.05 v4.1.0, 0.06 v4.0.1, 0.05 v3.7.0, 0.00 v2.1.0
% Syntax : Number of formulae : 7 ( 1 unt; 0 def)
% Number of atoms : 24 ( 0 equ)
% Maximal formula atoms : 5 ( 3 avg)
% Number of connectives : 21 ( 4 ~; 0 |; 9 &)
% ( 2 <=>; 6 =>; 0 <=; 0 <~>)
% Maximal formula depth : 10 ( 6 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 6 ( 6 usr; 0 prp; 1-4 aty)
% Number of functors : 5 ( 5 usr; 3 con; 0-2 aty)
% Number of variables : 18 ( 18 !; 0 ?)
% SPC : FOF_THM_RFO_NEQ
% Comments :
%--------------------------------------------------------------------------
%----MP. The "pop" predicate is symmetric: if FM and EP are subpopulations,
%----then EP and FM are also subpopulations.
fof(mp_symmetry_of_FM_and_EP,axiom,
! [E,T] :
( ( environment(E)
& subpopulations(first_movers,efficient_producers,E,T) )
=> subpopulations(efficient_producers,first_movers,E,T) ) ).
%----MP. The time points when FM and EP are present in the environment
%----occur during the environment sustains.
fof(mp_time_point_occur,axiom,
! [E,T] :
( ( environment(E)
& subpopulations(first_movers,efficient_producers,E,T) )
=> in_environment(E,T) ) ).
%----MP. on "greater or equal to"
fof(mp_growth_rate_relationships,axiom,
! [E,S1,S2,T] :
( ( ( environment(E)
& subpopulations(S1,S2,E,T) )
=> greater_or_equal(growth_rate(S1,T),zero) )
<=> ~ greater(zero,growth_rate(S1,T)) ) ).
%----D2. A subpopulation outcompetes an other in an environment at a
%----certain time, if and only if, it has non-negative growth rate while
%----the other subpopulation has negative growth rate.
fof(d2,hypothesis,
! [E,S1,S2,T] :
( ( environment(E)
& subpopulations(S1,S2,E,T) )
=> ( ( greater_or_equal(growth_rate(S2,T),zero)
& greater(zero,growth_rate(S1,T)) )
<=> outcompetes(S2,S1,T) ) ) ).
%----A12. If a subpopulation does not decrease in members, then a more
%----resilient subpopulation does not decrease either.
fof(a12,hypothesis,
! [E,S1,S2,T] :
( ( environment(E)
& in_environment(E,T)
& ~ greater(zero,growth_rate(S1,T))
& greater(resilience(S2),resilience(S1)) )
=> ~ greater(zero,growth_rate(S2,T)) ) ).
%----A2. Efficient producers are more resilient than first movers.
fof(a2,hypothesis,
greater(resilience(efficient_producers),resilience(first_movers)) ).
%----GOAL: T5. First movers never outcompete efficient producers.
fof(prove_t5,conjecture,
! [E,T] :
( ( environment(E)
& subpopulations(first_movers,efficient_producers,E,T) )
=> ~ outcompetes(first_movers,efficient_producers,T) ) ).
%--------------------------------------------------------------------------